光纤光学_第4章_第2部分
- 格式:pdf
- 大小:1.93 MB
- 文档页数:60
光纤光学课后答案【篇一:光纤应用习题解第1-7章】>1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)a:单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um左右,多模一般在50um以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
a::na的大小表征了光纤接收光功率能力的大小,即只有落入以m为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?a:阶跃型光纤的na与光纤的几何尺寸无关,渐变型光纤的na是入射点径向坐标r的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
n12-n22n1-n2a:d=2n12n1d的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?a:固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
a:材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?a:单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
a:设光纤的长度为l,光纤中平行轴线的入射光线的传输路径最短,为l;以临界角入射到纤芯和包层界面上的光线传输路径最长,为linfc。
第一章绪论¾光纤技术的起源;¾光通信的需求;为什么是光纤;¾光纤及其分类;¾光纤的制作;¾光纤光学的内容及发展通信的发展给社会和人们的生活方式带来革命性的变化通信促进各行业的发展通信网和应用工业自动化电子政务医疗卫生智能家居智慧农业§1 光纤的出现和发展通信改变人们的生活方式4通信网和应用投资理财旅游订票网上购物交友聊天游戏娱乐带来革命性的变化给人们带来的困扰5通信网和应用包括诈骗在内的网络犯罪日益猖獗上网和游戏成瘾个人信息和公司机密的泄露带来革命性的变化交通安全¾通俗讲的通信是人们在日常生活中相互之间传递信息的过程。
(信息是消息中包含的有意义的内容)¾现代通信技术,就是随着科技的不断发展,如何采用最新的技术来不断优化通信的各种方式,让人与人的沟通变得更为便捷、有效。
现代通信技术通信系统有线通信系统有线载波通信光通信架空明线对称电缆同轴电缆空间光通信光纤通信无线通信系统微波中继通信卫星通信移动通信微波散射通信流星余迹通信中继站终端站地面微波中继通信干线己被光纤取代多工作在3000MHz 以上频段,通过中继站接力传输。
60,70年代曾是通信干线的主要方式之一。
数字微波通信:利用波长为1m~1mm 范围内的电磁波通过中继站传输信号的一种通信方式。
注:移动通信、卫星通信、无线接入虽工作在微波频段,但一般不划归于微波通信这一类。
“微波通信”一般是指微波接力通信。
卫星通信:利用人造地球卫星作为中继站来转发或反射无线电波,在两个或多个地球站之间进行通信的技术。
优点: 通信距离远,覆盖面大,不受地形条件限制,可达海洋、沙漠、高山。
缺点:可靠性不及光纤、微波中继通信卫星移动通信:指通信双方至少有一方在移动中进行的信息交换的通信。
己成为目前世界最普及的通信工具。
当前主要推广第三代(3G),正在研究发展第四代。
至公用电话网车载台手持机移动电话局基站公用移动电话系统结构示意图光纤通信:是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍。
光纤光学第三版光纤光学是一门关于光的传输和控制的学科,它在现代通信领域发挥着重要作用。
光纤光学技术的发展和应用,为人们的生活带来了巨大的改变。
本文将简要介绍光纤光学的基本原理和应用。
第一章:光纤光学的基本原理光纤光学的基本原理是利用光的全反射特性,将光信号沿光纤传输。
光纤由一个中心的光导芯和一个包围在外面的光折射层组成。
光信号在光导芯中传播时会发生全反射,从而实现光的传输。
光纤光学的主要优势是其传输速度快、容量大、抗干扰能力强等特点。
第二章:光纤光学的应用光纤光学在通信领域有着广泛的应用。
光纤通信是目前最常用的高速通信方式,它具有传输速度快、带宽大、信号衰减小等优点。
光纤通信不仅广泛应用于电话、互联网等常见通信领域,还被用于卫星通信、军事通信等特殊领域。
光纤传感技术也是光纤光学的重要应用之一。
光纤传感技术可以实现对温度、压力、光强等物理量的测量和监测。
这种传感技术具有高灵敏度、抗干扰能力强等特点,广泛应用于工业、医疗、环境监测等领域。
第三章:光纤光学的发展趋势随着科学技术的不断进步,光纤光学技术也在不断发展。
光纤光学在高速通信、数据存储、传感技术等方面的应用将进一步扩展。
光纤光学的发展趋势包括提高传输速度、增加传输容量、提高传输质量等。
光纤光学在医疗领域也有着广阔的前景。
光纤光学可以用于内窥镜、激光手术等医疗设备中,为医生提供更好的诊断和治疗手段。
总结:光纤光学是一门重要的学科,它在通信、传感和医疗等领域发挥着重要作用。
随着科学技术的不断进步,光纤光学技术将进一步发展并应用于更多领域。
光纤光学的发展将为人们的生活带来更多的便利和可能性。
让我们一起期待光纤光学的美好未来!。
光纤光学课后习题答案【篇一:光纤通信课后答案人民邮电出版社】ass=txt>第一章基本理论1、阶跃型折射率光纤的单模传输原理是什么?答:当归一化频率v小于二阶模lp11归一化截止频率,即0<v<2.40483时,此时管线中只有一种传输模式,即单模传输。
2、管线的损耗和色散对光纤通信系统有哪些影响?答:在光纤通信系统中,光纤损耗是限制无中继通信距离的重要因素之一,在很大程度上决定着传输系统的中继距离;光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。
3、光纤中有哪几种色散?解释其含义。
答:(1)模式色散:在多模光纤中存在许多传输模式,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。
(2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此引起的色散称为材料色散。
(3)波导色散:统一模式的相位常数随波长而变化,即群速度随波长而变化,由此引起的色散称为波导色散。
5、光纤非线性效应对光纤通信系统有什么影响?答:光纤中的非线性效应对于光纤通信系统有正反两方面的作用,一方面可引起传输信号的附加损耗,波分复用系统中信道之间的串话以及信号载波的移动等,另一方面又可以被利用来开发如放大器、调制器等新型器件。
6、单模光纤有哪几类?答:单模光纤分为四类:非色散位移单模光纤、色散位移单模光纤、截止波长位移单模光纤、非零色散位移单模光纤。
12、光缆由哪几部分组成?答:加强件、缆芯、外护层。
*、光纤优点:巨大带宽(200thz)、传输损耗小、体积小重量轻、抗电磁干扰、节约金属。
*、光纤损耗:光纤对光波产生的衰减作用。
引起光纤损耗的因素:本征损耗、制造损耗、附加损耗。
*、光纤色散:由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,导致信号的畸变。
引起光纤色散的因素:光信号不是单色光、光纤对于光信号的色散作用。
光纤光学第三版第一章光纤的基本原理光纤是一种能够传输光信号的特殊材料,它由纤维状的高纯度玻璃或塑料制成。
光纤的核心是一个非常细长的玻璃纤维,外部则包裹着一层称为包层的材料。
光纤的传输原理基于全反射的现象,当光线从光纤的一端入射时,由于光线与接触面的入射角大于临界角,光线会完全被内部反射,从而沿着光纤的长度传输到另一端。
在光纤光学中,我们经常会遇到一些重要的概念,比如光纤的数值孔径、单模光纤和多模光纤等。
数值孔径是用来描述光纤对光线的接受能力的参数,数值孔径越大,光纤的接收能力越强。
单模光纤是指只能传输一种特定模式的光信号,而多模光纤则可以传输多种模式的光信号。
第二章光纤通信系统光纤通信系统是一种利用光纤传输信息的通信方式。
它由光源、调制器、光纤、接收器等组成。
光源是产生高强度的光信号的装置,调制器则用来调制光信号的强度、频率或相位。
光纤作为信息的传输通道,能够将光信号高效、快速地传输到目的地。
接收器则用来接收传输过来的光信号,并将其转换成电信号,供后续处理。
光纤通信系统具有许多优点,比如传输速度快、带宽大、抗干扰能力强等。
它已经广泛应用于电话、互联网、有线电视和数据中心等领域。
光纤通信系统的发展也推动了信息技术的快速发展,使人们能够更加便捷地进行通信和信息交流。
第三章光纤传感技术光纤传感技术是利用光纤的特殊性质进行测量和监测的技术。
光纤传感器可以将环境中的物理量、化学量或生物量转化为光信号,通过光纤传输到检测仪器进行分析。
光纤传感技术在环境监测、工业生产和医学诊断等领域有着广泛的应用。
光纤传感技术具有高精度、实时性好、抗干扰能力强等优点。
它可以实现对温度、压力、湿度、浓度等多种物理量的测量,而且可以远距离传输信号,适用于复杂环境中的监测任务。
第四章光纤传输系统的性能优化光纤传输系统的性能优化是提高光信号传输质量和可靠性的关键。
在光纤传输过程中,会受到多种因素的影响,比如衰减、色散、非线性等。
为了降低这些影响,可以采取一些措施,比如使用低损耗的光纤材料、优化光纤的结构、增加光纤的数值孔径等。
第一部分:引言1. 光纤光学作为一门重要的光学科学,一直以来都备受关注和研究。
2. 光纤光学的发展,不仅改变了通信行业,还在医学、军事等领域有着重要的应用。
3. 本文将结合光纤光学第四版相关内容,重点讨论证明式子2.31的过程和结果。
第二部分:背景知识1. 光纤光学的基本原理:光纤是一种传输光信号的特殊导光通道,其工作原理是全内反射。
2. 斯涅耳(Snell)定律:描述了光在两种介质之间传播时的折射规律,即$n_1 \sin\theta _1 = n_2 \sin\theta _2$,其中$n_1$和$n_2$分别为介质1和介质2的折射率,$\theta _1$和$\theta _2$分别为入射角和折射角。
3. 光纤光学第四版:是光纤光学方面的经典教材,系统地介绍了光纤光学的理论和实践知识。
第三部分:证明式子2.31的过程1. 式子2.31的内容:$V = \frac{2\pi a}{\lambda}\sqrt{n_1^2 -n_2^2}$2. 光纤中的模式:光在光纤中的传播,与光纤的数值孔径$NA$和归一化频率$V$密切相关。
3. 推导过程:通过对式子2.31的变量及其物理意义进行分析,结合斯涅耳定律,可以得出$V = \frac{2\pi a}{\lambda}\sqrt{n_1^2 -n_2^2}$。
第四部分:结论1. 通过对光纤光学第四版中式子2.31的证明过程进行分析,我们进一步加深了对光纤光学理论的理解。
2. 光纤光学的理论基础和实践应用是密不可分的,希望本文的讨论能够为相关领域的学者和工程师提供一定的参考和启发。
3. 在今后的研究和应用中,我们将继续关注光纤光学领域的最新进展,为推动光学技术的发展做出更多贡献。
光纤光学作为一门重要的光学科学,一直以来都备受关注和研究。
随着信息时代的到来,光纤通信技术作为一种高速、大容量、低损耗的通信手段,得到了广泛的应用。
除了通信领域,光纤光学还在医学、军事等领域有着重要的应用。