第二章 光纤光学的基本方程
- 格式:ppt
- 大小:1.80 MB
- 文档页数:26
光纤光学的基本⽅程679KB第⼆章光纤光学的基本⽅程光纤光学的研究⽅法⼏何光学⽅法:光纤芯径远⼤于光波波长0λ时, 可以近似认为0λ→0从⽽将光波近似看成由⼀根⼀根光线所构成, 因此可采⽤⼏何光学⽅法来分析光线的⼊射、传播(轨迹) 以及时延(⾊散) 和光强分布等特性,这种分析⽅法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分布等现象,分析单模光纤时结果存在很⼤的误差。
波动光学⽅法:是⼀种严格的分析⽅法,从光波的本质特性电磁波出发,通过求解电磁波所遵从的麦克斯韦⽅程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适⽤于各种折射率分布的单模和多模光纤。
缺点:分析过程较为复杂。
光纤光学的研究⽅法⽐较光线理论与波动理论分析思路电磁分离波动⽅程wave equation时空分离亥姆赫兹⽅程Helmholtz equation纵横分离波导场⽅程2.1 麦克斯韦⽅程与亥姆赫兹⽅程⼀、麦克斯韦⽅程光纤是⼀种介质光波导,具有如下特点:①⽆传导电流;②⽆⾃由电荷;③线性各向同性。
边界条件:在两种介质交界⾯上电磁场⽮量的E(x,y)和H(x,y)切向分量要连续,D 与B的法向分量连续:⼆、光线⽅程光线⽅程光线⽅程的物理意义:当光线与z 轴夹⾓很⼩时,有:物理意义:将光线轨迹(由r描述)和空间折射率分布(n)联系起来;由光线⽅程可以直接求出光线轨迹表达式;d r/dS是光线切向斜率, 对于均匀波导,n为常数,光线以直线形式传播;对于渐变波导,n是r的函数,则d r/dS为⼀变量, 这表明光线将发⽣弯曲。
⽽且可以证明,光线总是向折射率⾼的区域弯曲。
典型光线传播轨迹反射型折射型模式分析的基本过程数学模型园柱坐标系中的波导场⽅程边界条件本征解与本征值⽅程本征值与模式分析数学模型阶跃折射率分布光纤(SIOF)是⼀种理想的数学模型,即认为光纤是⼀种⽆限⼤直园柱系统,芯区半径a ,折射率为1n ;包层沿径向⽆限延伸,折射率为折射率为2n ;光纤材料为线性、⽆损、各向同性的电介质。
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
第一章 光纤光学基础1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)A :单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um 左右,多模一般在50um 以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
A::NA 的大小表征了光纤接收光功率能力的大小,即只有落入以m 为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?A :阶跃型光纤的NA 与光纤的几何尺寸无关,渐变型光纤的NA 是入射点径向坐标r 的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
A :2221212112n n n n n n --D =?D 的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?A :固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
A :材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?A :单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
A :设光纤的长度为L ,光纤中平行轴线的入射光线的传输路径最短,为L ;以临界角入射到纤芯和包层界面上的光线传输路径最长,为sin c L f 。
光学中的光学光纤方程光学光纤是现代通信技术中不可或缺的组成部分。
它的应用范围广泛,既可用于通信传输,也可用于医疗、材料加工、传感器等领域。
光学光纤的优点是传输速度快、带宽高、抗干扰能力强、信号损耗小等。
但是,光纤传输中的信号衰减、色散等问题也不容忽视。
在光学光纤中,光从一端进入,经过光纤中的反射和折射等过程传输,并在另一端输出。
光纤的传输过程受到多种因素的影响,如纤芯直径、材料折射率、纤芯和外套之间的折射率差、温度等。
因此,需要建立光学光纤传输的数学模型,以描述光信号的传输过程。
建立光学光纤传输模型的基础是麦克斯韦方程组。
麦克斯韦方程组描述了电磁场的变化,光就是电磁波的一种。
光在介质中传输时,其电场和磁场在空间和时间上都会随着位置和时间的变化而变化,因此麦克斯韦方程组可以描述光的变化规律。
在光纤传输中,光的传播过程涉及到折射和反射现象。
折射现象是指光线从一种介质进入到另一种介质时,会发生偏折的现象。
反射现象则是指光线在介质表面发生反弹现象。
光的折射和反射现象会影响光信号在光纤中的传输过程,也就是说,光纤的传输特性取决于光的折射和反射。
光在光学光纤中的传输过程可以用光学光纤方程表示。
光学光纤方程是通过微分方程对光纤中的光强度和相位进行描述,它可以描述光纤中光的传输特性、极化特性、光学记忆效应、色散和非线性效应等。
常见的光学光纤方程包括折射率波动方程和非线性薄膜方程。
折射率波动方程是描述光在光学光纤中传输时,由于纤芯直径变化等原因而产生的折射率变化所引起的总波长变化。
其数学表达式为:$$\frac{d^2 A}{dz^2}+k^2n^2(z)A=0$$其中$A(z)$表示光波的振幅,$n(z)$表示光纤中的局部折射率,$k$表示波数。
在单模光纤中,$n(z)$是一个常数,说明光波在光纤中传输时的特性是一个单一的傅里叶模式。
非线性薄膜方程描述了光在光学光纤中传输时,受到光纤的非线性效应的影响而引起的相位和能量变化。