光纤光学第二章
- 格式:ppt
- 大小:967.00 KB
- 文档页数:4
光纤光学的基本⽅程679KB第⼆章光纤光学的基本⽅程光纤光学的研究⽅法⼏何光学⽅法:光纤芯径远⼤于光波波长0λ时, 可以近似认为0λ→0从⽽将光波近似看成由⼀根⼀根光线所构成, 因此可采⽤⼏何光学⽅法来分析光线的⼊射、传播(轨迹) 以及时延(⾊散) 和光强分布等特性,这种分析⽅法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分布等现象,分析单模光纤时结果存在很⼤的误差。
波动光学⽅法:是⼀种严格的分析⽅法,从光波的本质特性电磁波出发,通过求解电磁波所遵从的麦克斯韦⽅程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适⽤于各种折射率分布的单模和多模光纤。
缺点:分析过程较为复杂。
光纤光学的研究⽅法⽐较光线理论与波动理论分析思路电磁分离波动⽅程wave equation时空分离亥姆赫兹⽅程Helmholtz equation纵横分离波导场⽅程2.1 麦克斯韦⽅程与亥姆赫兹⽅程⼀、麦克斯韦⽅程光纤是⼀种介质光波导,具有如下特点:①⽆传导电流;②⽆⾃由电荷;③线性各向同性。
边界条件:在两种介质交界⾯上电磁场⽮量的E(x,y)和H(x,y)切向分量要连续,D 与B的法向分量连续:⼆、光线⽅程光线⽅程光线⽅程的物理意义:当光线与z 轴夹⾓很⼩时,有:物理意义:将光线轨迹(由r描述)和空间折射率分布(n)联系起来;由光线⽅程可以直接求出光线轨迹表达式;d r/dS是光线切向斜率, 对于均匀波导,n为常数,光线以直线形式传播;对于渐变波导,n是r的函数,则d r/dS为⼀变量, 这表明光线将发⽣弯曲。
⽽且可以证明,光线总是向折射率⾼的区域弯曲。
典型光线传播轨迹反射型折射型模式分析的基本过程数学模型园柱坐标系中的波导场⽅程边界条件本征解与本征值⽅程本征值与模式分析数学模型阶跃折射率分布光纤(SIOF)是⼀种理想的数学模型,即认为光纤是⼀种⽆限⼤直园柱系统,芯区半径a ,折射率为1n ;包层沿径向⽆限延伸,折射率为折射率为2n ;光纤材料为线性、⽆损、各向同性的电介质。
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
第2章 复习思考题参考答案2-1 用光线光学方法简述多模光纤导光原理答:现以渐变多模光纤为例,说明多模光纤传光的原理。
我们可把这种光纤看做由折射率恒定不变的许多同轴圆柱薄层n a 、n b 和n c 等组成,如图2.1.2(a )所示,而且 >>>c b a n n n 。
使光线1的入射角θA 正好等于折射率为n a 的a 层和折射率为n b 的b 层的交界面A 点发生全反射时临界角()a b c arcsin )ab (n n =θ,然后到达光纤轴线上的O'点。
而光线2的入射角θB 却小于在a 层和b 层交界面B 点处的临界角θc (ab),因此不能发生全反射,而光线2以折射角θB ' 折射进入b 层。
如果n b 适当且小于n a ,光线2就可以到达b 和c 界面的B'点,它正好在A 点的上方(OO'线的中点)。
假如选择n c 适当且比n b 小,使光线2在B '发生全反射,即θB ' >θC (bc) = arcsin(n c /n b )。
于是通过适当地选择n a 、n b 和n c ,就可以确保光线1和2通过O'。
那么,它们是否同时到达O'呢?由于n a >n b ,所以光线2在b 层要比光线1在a 层传输得快,尽管它传输得路经比较长,也能够赶上光线1,所以几乎同时到达O'点。
这种渐变多模光纤的传光原理,相当于在这种波导中有许多按一定的规律排列着的自聚焦透镜,把光线局限在波导中传输,如图2.1.1(b )所示。
图2.1.2 渐变(GI )多模光纤减小模间色散的原理2-2 作为信息传输波导,实用光纤有哪两种基本类型答:作为信息传输波导,实用光纤有两种基本类型,即多模光纤和单模光纤。
当光纤的芯径很小时,光纤只允许与光纤轴线一致的光线通过,即只允许通过一个基模。
只能传播一个模式的光纤称为单模光纤。