用法向量求二面角的大小及其角度关系的确定
- 格式:doc
- 大小:210.00 KB
- 文档页数:5
求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。
本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
一、向量法向量法是一种简便的求解二面角的方法。
它利用向量的夹角来表示二面角。
首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。
通过向量的点积和模长运算,可以得到二面角的大小。
二、坐标法坐标法是一种常用的求解二面角的方法。
它利用坐标系中的点来表示二面角。
我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。
三、三角法三角法是一种基于三角函数的求解二面角的方法。
它利用三角函数的性质来计算二面角的大小。
通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。
四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。
它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。
例如,可以利用平行线的性质、垂直线的性质等来计算二面角。
五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。
它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。
例如,可以利用球面上的弧长、球面上的角度等来计算二面角。
六、投影法投影法是一种利用投影关系求解二面角的方法。
它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。
例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。
通过以上六种方法,我们可以灵活地求解二面角的大小。
不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。
这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。
总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。
利用法向量求二面角1. 什么是二面角在几何学中,二面角指的是两个平面的夹角,通常用来描述空间中的角度关系。
具体地说,二面角是由两个面的法向量所定义的角度,通过测量一个面对相邻面的法向量之间的夹角来计算。
2. 法向量的概念在三维空间中,平面可以通过一个法向量来定义。
法向量垂直于平面,并且指向平面的外部。
根据向量的定义,法向量具有方向和大小。
法向量的大小表示平面的倾斜程度,而法向量的方向则指示平面的朝向。
3. 利用法向量求二面角的方法要计算两个平面之间的二面角,可以利用它们的法向量。
具体的方法如下:步骤1:首先,确定两个平面的法向量。
可以通过计算平面上的三个非共线点的向量叉积来获得一个平面的法向量。
同样地,另一个平面的法向量也可以通过相同的方法来计算。
步骤2:然后,计算两个法向量之间的夹角。
夹角可以通过计算两个向量的内积的反余弦值来获得。
步骤3:最后,得到的夹角就是两个平面之间的二面角。
根据需要,可以将夹角的单位转换为度数或弧度。
4. 示例为了更好地理解利用法向量求二面角的方法,我们来看一个示例。
假设有两个平面,A和B,它们的法向量分别为n_n=(n,n,n)和n_n=(n,n,n)。
首先,计算法向量的夹角。
夹角n可以表示为n=nn+nn+nn。
然后,得到的角度n就是平面A和平面B之间的二面角。
5. 总结利用法向量可以方便地计算两个平面之间的二面角。
通过计算两个平面的法向量的夹角,可以得到二面角的值。
这个方法在计算几何学和计算机图形学中都有广泛的应用,用于描述三维空间中的角度关系。
以上就是利用法向量求二面角的说明文档,希望对你有所帮助。
如果你有任何问题或需要进一步的解释,请随时向我提问。
图图专题:如何解决向量法求二面角大小的判断求二面角的大小时,用平面的法向量法与其他方法相比,思想清晰而且推理简易,是一个较好的方法,是很多初学者乐于使用的方法。
但教材中对向量法求二面角大小的解释是模糊不清的,对于初学者来说,很难掌握。
对于二面角来说,设它的两个半平面现所在的平面21,αα的法向量分别为21,n n ,两个法向量的夹角为ϕ,二面角的大小为()πθθ≤≤0。
由图1,图2可以看出ϕθ=或ϕπθ-=以上我们可以看出:一个二面角的平面角与这个二面角的两 个半平面的法向量21,n n 所成的角相等(⎫⎛arccos)或互补(⎫⎛-arccos π)。
但到底是相等还是互补,在具体解题时,很多学生感到无从下手,往往任凭感觉来判断,缺乏严格的推理、证明,不严谨的求学风格也自然形成,各位同行也一定深有体会。
解决这一问题的关键在于确定法向量的确切方向。
引理:设点A 是平面α内一点,点B 是平面α外一点,是平面α的法向量当0>⋅n AB 时,n 的方向指向点B 所在的一侧(如图3);当0<⋅时,的方向指向点B 不在的一侧(如图4);下面,我们可以利用引理解决前面碰到的问题。
设B A ,分别是平面βα,上的两点,且都不在平面βα,的交线上,,分别是βα,的法向量,θ为平面βα,平面角。
1)当0,0>⋅>⋅时,得,的方向如图5所示,则=θ2) 当0,0<⋅<⋅m AB n AB 时,得m n ,图3图4图5图63) 当0,0<⋅>⋅m AB n AB 时,得m n ,的方向如图7所示,则-=πθ 4) 当0,0>⋅<⋅时,得,的方向如图8所示,则-=πθ综上所述,当⋅与m AB ⋅同号时,二面角的平面角大小为; 当⋅与m AB ⋅异号时,二面角的平面角大小为-π;例题 如图9所示,直三棱柱111C B A ABC -中,︒=∠90ACB ,2,1==CB AC ,侧棱11=AA ,侧面B B AA 11的两条对角线交点为D ,11C B 的中点为M ,求面BD B 1与面CBD 所成二面角的大小.解:建系如图则()0,0,0C ,()0,0,2B,()()()1,0,0,1,1,0,0,1,211A A B所以()()()()0,1,0,0,1,2,0,0,2,1,1,2111===-=CB设平面BCD 的一个法向量为()z y x n ,,=,则:⎪⎩⎪⎨⎧=⋅=⋅001BAn CB n ,即:⎪⎩⎪⎨⎧=++-=0202z y x x ,令1=y ,得()1,1,0-=;同理可得平面D BB 1的一个法向量为()2,0,1=所以33,cos -=>=<又021>=⋅CB ,011>=⋅CB ,所以1CB m ⋅与1CB n ⋅同号,所以所求二面角的平面角为33arccos 33arccos arccos -=⎪⎪⎭⎫ ⎝⎛-=⎫⎛π 通过以上分析,用向量法求二面角的大小时,首先求出两个半平面的法向量,再从两个半平面内任选两点A ,B (不同在交线上),判断与法向量数量积的符号,确定法向量夹角与二面角大小之间的关系。
解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。
用法向量求二面角的大小及其角度关系的确定
我们都知道,向量知识在数学学科里有其非常广泛的应用,尤其是在立体几何求角和距离时,若利用向量知识求解会得到事半功倍的效果,也正体现了向量知识的工具性和灵活性。
而在应用向量知识求解二面角的大小时,不是所有的二面角的两个半平面的法向量的夹角都和二面角相等,有时是互补,那么,什么时候相等,什么时候互补,如何确定其“角度之间的大小关系”一直以来是困扰很多教师和学生的一个难题。
向量有其自身的独特性质—自由性,当一个向量在空间的某一位置时,可以自由移动,只要满足其方向不变,其无论移动到任何位置,向量都是相等的。
根据这一性质,当我们把二面角的某个半平面的法向量求出后,把它的起点放到坐标原点,然后确定其向量的方向的指向,从而确定其法向量的夹角和二面角的大小的关系,在确定了法向量的夹角与二面角的关系后,再利用向量的数量积求出二面角的大小,下面就来具体阐述一下这一做法。
一. 规定法向量的指向方向
1.当法向量的方向指向二面角的内部时称之为向里指,
如:图1中的1n 向量。
2.当法向量的方向指向二面角的外部时称之为向外指,如:图1中的2n 向量。
二. 法向量的夹角和二面角大小的关系
1.设 21,n n 分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量 21,n n 的夹角为ϕ,当两个法向量的方向都向里或都向外指时,则有πϕθ=+(图
2);
2.当两个法向量的方向一个向里指一个向外指时ϕθ=(图3)
1.已知二面角βα--l ,若平面α的法向量)3,4,4(=,由向量的相等条件知,坐标是(4,4,3)的向量有无数多个,根据向量的自由性,我们只需做出由原点出发的一个向量便可,如图4所示,从而,我们很容易的判断出平面α法向量的方向的指向,是指向二面角的里面。
2.若平面α法向量)1,3,4(--=,同理可做出从原点出发的法向量,如图5所示,显然,方向是指向二面角的外面。
四.应用举例
例题1. 如图6,在棱长为1的正方体ABCD-A 1B !C 1D 1中G 、E 、F 分别为AA 1、AB 、BC 的中点,求作二面角G —EF —D 半平面GEF 的法向量并判断其方向。
解:以D 为原点建立空间直角坐标系,则E(1,
21,0) 、F(2
1
,1,0) 、 G(1,0,2
1
)由此得:
)21,21,0(-=)021,21(-=
设平面的法向量为),,(z y x = 由⊥及⊥可得
⎪⎪⎩
⎪⎪⎨⎧
=-=∙=-=∙021*******y x z y ⎩
⎨
⎧==⇒y z y x 令y=1取平面的一个法向量为)1,1,1(=n
评析因为平面的法向量有无数个,方向可上可下,模可大可小,我们只要求出平面的某一个法向量即可,再令其从原点出发,做出法向量)1,1,1(=n 如图所示,方向指向二面角G —EF —D 的外部。
例题2.如图7,在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.解 如图,建立空间直角坐标系. 依题意:A 1(0,0,2),D (0,4,0). ∴Q (2,2,0),D (0,4,0), ∴)0,2,2(),2,2,2(1-=-=QD Q A 半平面面AA 1D 的法向量)0,0,1(1=n 设面A 1DQ 的法向量),,(3212a a a n =
则⎪⎩⎪⎨⎧=+-=⋅=-+=⋅,
022,022*********a a QD n a a a Q A n ⎩⎨
⎧==⇒,2,1312a a a a ∴)2,,(1112a a a n = 令a 1=1,则)2,1,1(2=n
做出从原点出发的向量)2,1,1(2=n ,如图所示,从图形得出,半平面AA 1D 的法向量)0,0,1(1=n 的方向指向为二面角A —A 1D —Q 的里面,半平面A 1DQ 的
y
z
法向量)2,1,1(2=n 的方向指向为二面角的外面,所以二法向量的夹角与二面角的大小相等。
即:cos θ
=6
66
11,cos 21=⋅=
<n n . ∴二面角A —A 1D —Q 的大小为6
6arccos。
评析(1)传统方法求二面角大小时需三个步骤:“找——证——求”,而用法向量求二面角大小时简化成了两步骤:“判断——计算”,这在一定程度上降低了学生解决立体几何问题的难度,也体现了各部分知识间的贯通性和灵活性,更加注重对学生创新能力的培养,体现了教育改革的精神。
(2)求出法向量此)2,1,1(2=n 之后,在坐标系中令其从原点出发做出此法向量,然后判断其方向指向,即指向二面角A —A 1D —Q 的里面,又半平面A 1DQ 的法向量)2,1,1(2=n 的方向指向为二面角的外面,所以二法向量的夹角与二面角的大小相等。
从而,二面角的大小利用向量的数量积而求得。
例题 3.如图8,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠
A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A
所成的二面角的余弦值。
解: 以A 为原点如图建立空间直角坐标系,
则S (0,0,
2
1
), A (0,0,0), B (0,1,0),C (1,1,0),D (2
1
,0,0),
)21
,1,1(),21,0,21(-=-=,
显然平面SB A 的一个法向量为1n =(1,0,0), 设平面SCD 的一个法向量为2n =(x ,y ,z ),则2⊥平面SCD
∴)214121(,2102200
222,,n z z y x z x n -==⎩⎨⎧=-+=-⇒⎪⎩⎪⎨
⎧=⋅=⋅则取
由图知,半平面SB A 的法向量为1n =(1,0,0)的方向指向面SCD 与面SB A 所成
的二面角的里面,半平面SCD 的法向量)2
1
,41,21(2-=n 指向面SCD 与面SB A 所
成的二面角的外面,所以二法向量的夹角与二面角的大小相等,由此得:cos θ=3
2,cos 212
121=>=
<n n ∴所求的二面角的余弦值为
3
2. 若在:)21
4121(,2102202--=-=⎩⎨
⎧=-+=-,,n z z y x z x 则取 这时,两个半平面的法向量就都指向面 SCD 与面SB A 所成的二面角的里面了, 如图9,两个法向量的夹角与二面角的 大小互补,即:
θ=-π<>21,n n
∴cos θ=32
|
|||,cos 212
12
1=>=<-n n n n <注:在求得关于x,y,z 的关系式,给z 赋值时,由于版面的空间有限,只好取z=2
1
,
而通常我们在做题时,一般都令z=1,这样便于计算。
>评析:(1)因为所求的二面角的交线在图中较难作出,所以用传统的方法求二面角比较困难,向量法在这里就体现出它特有的优势;(2)法向量的取法可以灵活多变,但做出法向量的时候,要遵循一个原则,即:从原点出发。
将向量知识引进中学数学后,既丰富了中学数学内容,拓宽了中学生的视野,又给很多问题的解决增加了亮点,比如:在解析几何上,在立体几何上都有其非常广泛的应用,向量知识必将逐步的被我们广大师生所接受所认可并发挥其应有的作用。
图9。