向量法-求二面角大小
- 格式:ppt
- 大小:617.00 KB
- 文档页数:30
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
向量法求二面角大小洋葱数学【原创实用版】目录一、引言二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)3.根据图形判断是锐二面角还是钝二面角4.确定 cos 的符号5.用反三角函数表示这个角三、结论正文一、引言在数学中,二面角是指两个平面之间的夹角,它是一个非常重要的概念。
在实际应用中,求解二面角大小有着广泛的应用,而向量法是求解二面角大小的一种常用方法。
本文将从向量法的角度出发,详细介绍如何求解二面角大小。
二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量在求解二面角大小时,首先需要找到两个平面上的法向量。
法向量是垂直于平面的向量,它可以通过计算平面上两个向量的叉积得到。
假设平面 1 的法向量为 A,平面 2 的法向量为 B,则可以通过计算向量 A 和向量 B 的叉积得到法向量 C。
2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)接下来,需要计算二面角大小所对应的 cos 值。
根据向量内积的定义,可以得到 cos(法向量 1 法向量 2)=(法向量 1·法向量 2)/(法向量 1 的模长*法向量 2 的模长)。
其中,法向量 1·法向量 2 表示法向量 1 和法向量 2 的内积,法向量 1 的模长和法向量 2 的模长分别表示它们的模长。
3.根据图形判断是锐二面角还是钝二面角在计算出 cos 值后,需要根据图形来判断这个二面角是锐二面角还是钝二面角。
如果 cos 值为正,那么这个二面角就是锐二面角;如果 cos 值为负,那么这个二面角就是钝二面角。
4.确定 cos 的符号在计算 cos 值时,需要注意 cos 值的符号。
如果法向量 1 和法向量 2 的内积为正,那么 cos 值为正;如果内积为负,那么 cos 值为负。
在实际计算中,需要根据具体情况来确定 cos 值的符号。
用法向量求二面角的大小及其角度关系的确定我们都知道,向量知识在数学学科里有其非常广泛的应用,尤其是在立体几何求角和距离时,若利用向量知识求解会得到事半功倍的效果,也正体现了向量知识的工具性和灵活性。
而在应用向量知识求解二面角的大小时,不是所有的二面角的两个半平面的法向量的夹角都和二面角相等,有时是互补,那么,什么时候相等,什么时候互补,如何确定其“角度之间的大小关系”一直以来是困扰很多教师和学生的一个难题。
向量有其自身的独特性质—自由性,当一个向量在空间的某一位置时,可以自由移动,只要满足其方向不变,其无论移动到任何位置,向量都是相等的。
根据这一性质,当我们把二面角的某个半平面的法向量求出后,把它的起点放到坐标原点,然后确定其向量的方向的指向,从而确定其法向量的夹角和二面角的大小的关系,在确定了法向量的夹角与二面角的关系后,再利用向量的数量积求出二面角的大小,下面就来具体阐述一下这一做法。
一.规定法向量的指向方向1.当法向量的方向指向二面角的内部时称之为向里指,如:图1中的向量。
1n 2.当法向量的方向指向二面角的外部时称之为向外指,如:图1中的向量。
2n 二.法向量的夹角和二面角大小的关系1.设 分别为平面的法向量,二面角的大小为,向量21,n n βα,βα--l θ的夹角为,当两个法向量的方向都向里或都向外指时,则有21,n n ϕ(图2);πϕθ=+2.当两个法向量的方向一个向里指一个向外指时(图3)ϕθ=图2图3三、在坐标系中做出法向量,从而确定法向量的方向指向1.已知二面角,若平面的法向量,由向量的相等条βα--l α)3,4,4(=n 件知,坐标是(4,4,3)的向量有无数多个,根据向量的自由性,我们只需n 做出由原点出发的一个向量便可,如图4所示,从而,我们很容易的判断出平面法向量的方向的指向,是指向二面角的里面。
α2.若平面法向量,同理可做出从原点出发的法向量,如图5α)1,3,4(--=n 所示,显然,方向是指向二面角的外面。
高中数学求二面角技巧
高中数学中,求解二面角是一项重要的技巧。
二面角是指两个平面相交而形成的角度,常常出现在几何题目中。
以下是一些求解二面角的技巧:
1. 使用向量法求解二面角
向量法是求解二面角的常用方法。
假设有两个平面AB和CD,且它们相交于一条直线EF。
设向量AB=n,向量CD=m,向量EF=a,则二面角θ的余弦值为:
cosθ=(n·m)/( |n|·|m| )
其中,n·m表示n和m的数量积,|n|和|m|表示向量n和向量m 的模长。
2. 利用三角函数求解二面角
如果已知二面角的两个面的斜率,可以使用三角函数求解二面角。
设两个平面的斜率分别为k1和k2,则二面角的正切值为:
tanθ=(k1-k2)/(1+k1k2)
可以使用反正切函数求解出二面角的值。
3. 利用平面几何知识求解二面角
通过平面几何知识,可以求解出两个平面的交线与一个球面的交线,从而求解二面角。
设两个平面在点O处相交,交线为AB和CD,球心为O,球面与交线AB和CD的交点分别为P和Q,则二面角θ等
于∠POQ。
以上是求解二面角的一些常用技巧,希望对高中数学学习有所帮
助。
二面角的求解策略如何求二面角的大小,历来是空间几何中的难点.本文重点介绍二面角的各种求解方法,并讨论和比较各种解法的优劣.我们希望即将应考的考生面对有关的考题,不仅能够正确地解出,而且能省时省力地用尽可能好的方法解出.一般地说,求二面角大小的方法主要有如下三种:(1)直接法.即通过求二面角的平面角,直接求这个二面角的大小.(2)投影法.即通过投影公式cos S S θ'=⋅求二面角的大小.其中S ′、S 分别表示投影图形和被投影图形的面积,而θ则是这两个图形所在平面的夹角.(3)向量法.即通过作二面角的两个面的法向量,将求二面角的大小转化为求这两个法向量夹角的大小.在特殊情况下,有时也可以采用其他方法.如利用公式cos cos cos θαβ=⋅去求二面角的大小.其中θ、α、β分别表示有关的线线角,线面角和二面角.在实战中,到底选用何种方法,应当因题因人而异.事先就规定或提倡一定用某一种方法是不好的.请看:(一)二面角各种求法优劣性的比较.【例1】 如图,在底面是直角梯形的四棱锥S-ABCD 中,∠ABC=90°SA ⊥平面ABCD ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成二面角的正切值.【解析1】(向量法) 建立如图的空间直角坐标系.有:A (0,0,0),B (-1,0,0),C (-1,2,0),D (0,21,0).由于AD ⊥平面SAB ,∴平面SAB 的一个法向量为:n 1=(0,1,0);设平面SDC 的法向量为:n 2=(x ,y ,z ).由()()()⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧=--=⎪⎭⎫ ⎝⎛-⇒⊥⊥01,2,1,,01,21,0,,22z y x z y x SC n SD n⎪⎩⎪⎨⎧=-+-=-⇒02021z y x z y 令z=1,则y=2,x=1.于是n 2=(1,2,1).∴n 1·n 2=2,且∣n 1∣=1,∣n 2∣=6.设n 1,n 2夹角为θ,则33sin ,36612cos =∴=⋅==θθn n .于是22tan =θ,由于原二面角为锐二面角,故所求二面角的正切值亦为22.【评注】向量法的优点是,无须作出二面角的棱,也无须作其他的辅助线,仅凭向量的坐标运算即能A(0,0,0)S(0,0,1)C(-1,2,0)⎪⎭⎫ ⎝⎛0,21,0D X Y Z解决问题.但是本解也有明显的缺陷,一是计算繁杂,二是得准确处理原二面角与相应法向量夹角的关系.【解析2】(投影法)如图,延长BA 、CD 交于P ,连SP ,作AM ⊥PC 于M ,连SM ,则SM ⊥PC (三垂线定理).显然,△SPD 在平面SPD 上的射影是△SAP.∵AD ∥BC ,且AD=12BC ,∴AD 是△PBC 的中位线,AP=AB=1,∴12ASP S ∆=,而AM=AP AD SM PD ⋅∴,∴12SPD S PD SM ∆=⨯⨯=,于是1cos 33SAPSPDS S θθ∆∆====,∴tan 2θ=.即所求二面角的正切值为2. 【评注】从计算量看,投影法比之向量法要小,而且技巧性更高,还免除了原二面角与相应法向量夹角之间的转化工作,所以就本题而言,投影法比向量法更为优越.【解析3】(直接法)如图,延长BA 、CD 交于P ,连SP ,则AD 是△PBC 的中位线,且AP=AB=AS=1. ∠SAP=90°,∴SP =作AQ ⊥SP 于Q ,连DQ ,显然AD ⊥平面SBP ,∴DQ ⊥SP ,∠AQD 是二面角C-SP-B 的平面角,设为θ.则在直角三角形AQD中,tan AD AQ θ==即所求二面角的正切值为.【评注】本题中两平面的夹角是无棱二面角.由于作其平面角不易,所以不少人都放弃了直接法.其实就本题而言,直接法恰好是最简单最实惠的方法.所以我认为,只要是能够比较顺利地作出二面角的平面角的,还是以选用直接法为好.那么,作二面角的平面角又有哪些技巧呢?请看:(二)作二面角的平面角的两种基本手段.【例2】(2004高考·广东卷·18)如下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、SA BCDPM11112SAB CDPQ 111112F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.【分析】本题的特点是:在二面角的两个面中,已有CC 1⊥平面ABCD ,故可考虑利用三垂线定理构造二面角的平面角.【解析】(1)延长DE 、CB 交于H ,连SH ,由△ADE ∽△BHE ,知BH=BE=1,∴CH=CD=4,△CDH 是等腰直角三角形,且,作CG ⊥DH 于G ,连C 1G ,∵CC 1⊥平面ABCD ,∴C 1G ⊥DH ,∠CGC 1是二面角C-DH-C 1D 的平面角.则在直角三角形CGC 1中,∵CC 1=2,CG ==∴tan ∠CGC 1=1CC CG=故所求二面角的大小为(2,解法略. 【例3】在正方体ABCD-A 1B 1C 1D 1中,过顶点B 、D 、C 1作截面,则二面角B-DC 1-C 的大小是【分析】本题的特点是:二面角的两个面是有公共底边的两个等腰三角形,因而由平面几何知识,只须作公底的两条中线,即得二面角的平面角,如图中的∠BMC 即是.本题答案是,解法略.(三)与二面角有关的考题举例.【例4】(2004高考·湖南卷·理19)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ;(II )求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论.【解析】(1)从图形特点看,只须证明PA ⊥AB 且PA ⊥AD ,即可证明PA ⊥平面ABCD .ABCDA 1B 1C 1D 1E GH234311341由条件知菱形ABCD 的边长为a ,于是△PAB 与△PAD 中,AP=AB=AD=a ,且,由勾股定理知PA ⊥AB 且PA ⊥AD ,∴PA ⊥平面ABCD.(2)根据图形的特点,我们拟创造条件用第一种方法作二面角的平面角.作DG ⊥AD ,交 AE 延长线于G ,那么DG ∥AP ,12DG DE a PAEP==,且DG ⊥平面ABCD.连BD 交AC 于O ,∵四边形ABCD 是菱形,∴BD ⊥AC.连OG ,则OG ⊥AC ,∠DOG 是二面角E-AC-D 的平面角,设为θ.直角三角形DOG 中,OD=12BD =,∴tan DG OD θ==.于是θ=30°,即所求二面角θ的大小为30°.(3)从图形特点看,这样的点应为平面BDG 与PC 的交点,也就是OC 的中点.我们试着从这个方向去验证答案.取PC 中点F ,连OF ,则OF 是△POC 的中位线,∴OF ∥PA ∥DG ,且OF=12PA=DG ,故四边形是矩形.∵OB=OD ,∴OB 与FG 平行且相等,即四边形OBFG 是平行四边形,从而BF ∥OG ,∴BF ∥平面ACG.于是存在棱PC 的中点F ,使BF//平面AEC.【例5】正三棱柱C B A ABC '''-中,D 是AC 的中点.(1)证明AB ∥平面DBC 1;(2)若 AB 1⊥BC 1,求二面角D-BC 1-C 的余弦值.P ABCDECDA 1B 1C 1【分析】第(1)问不难如图,连B 1C 交BC 1于O ,连DO ,则DO 是△ACB 1的中位线,∴AB 1∥DO ,故AB ∥平面DBC 1.为解决第(2)问,须先对图形进行数据分析.不妨设这个正三棱柱底面边长为2,容易算出.当AB 1⊥BC 1时,亦有DO ⊥BC 1,DO 是BC 1的垂直平分线,∴DC 1CC 1AB 1=BC 1.由此,我们可以利用三垂线定理作出这个二面角的平面角:作DE ⊥BC 于E ,且DE ⊥CC 1,∴DE ⊥平面BB 1C 1C ,故BC 1⊥OE ,∠DOE 是二面角D-BC 1-C 的平面角.注意到△DOE 中∠DEO=90°,以下只须求DO 及OE 之长即可.但是我们发现求这两条线段之长并非易事,而△BDC 1与△BEC 1的面积却相应好求,所以我们改变策略,用投影法求这个二面角D-BC 1-C 的余弦值.【解析】(1)略(2)由上可知:△BDC 1在平面BB 1C 1C 上的射影是△BEC 1,而111322BDC S BD DC ∆=⨯⨯=,11322BEC S ∆=⨯=cos ∠DOE=112BEC BDC S S ∆∆=.即所求二面角D-BC 1-C. 【例6】已知在正方体ABCD-A 1B 1C 1D 1的边长为2,O 为AC 与BD 的交点,M 为DD 1的中点.求二面角B 1-MA-C 的正切值.【分析】本题看似简单,但若处理不当,计算量将是大而繁杂的.以下提供三种途径请读者鉴别之.ABCDA 1B 1C 1D 1M(1)如果你难以作出这个二面角的平面角,那么比较简单的方法是投影法:连MA 1,注意到△AB 1M 与△ACM 在平面AA 1D 1D 的射影分别是△AA 1M 和△ADM ,若设二面角A 1-AM-B 1,C-AM-B 1,C-AM-D 的大小分别为α、θ、β,显然α+θ+β=π.为求θ,只须用投影法先求出α和β即可.(2)连OB 1,OM.显然AC ⊥OM ,如果你能用数据分析的方法发现△MOB 1中∠MOB 1=90°,那么OB 1⊥平面AMC.再作OE ⊥AM 于E ,连B 1E ,则B 1E ⊥AM ,∠OEB 1是二面角C-AM-B 1的平面角,以下即可用直接法求之.(3)由于是正方体,故若以D 为原点建立空间直角坐标系,并设正方体棱长为2,则各个已知点的坐标易设,以下用向量法也是可行的.本题答案:(四)难题研究.以下是05年江苏卷的19题.原题共3问,其中第3问只要求考生直接写出答案,而无须交代过程.可见命题人已经预见到题解的繁杂性.我们在有关的各种资料上也只看到了答案,没有过程.因而笔者将这一问题提出两种解法,望各位批评指正.如图,在五棱锥S-ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,,∠BAE=∠BCD=∠CDE=120°. (1)求异面直线CD 与SB 的夹角; (2)证明BC ⊥平面SAB ;(3)用反三角函数值表示二面角B-SC-D 的大小 【分析】本题前两问不难,我们只研究第三问的解法.如果用直接法,难以作出二面角B-SC-D 的平面角;如果用投影法,又难以找到必要的线面夹角.在这种情况下,选用向量法应是明智之举.【解析】由已知条件容易求出∠ABC= ∠AED=90°,且.S AABCDA 1B 1C 1D 1M OE过E 作平面ABCDE 的垂线EZ ,分别以直线EA 、ED 、EZ 为x ,y ,z 轴建立如图的空间直角坐标系,则有E (0,0,0),A (2,0,0),S (2,0,2),D (00).设B (x ,y ,0),由∣BE ∣BA ∣=2,可得B (3,0);由DC =12EB ,可得C 302⎛⎫ ⎪ ⎪⎝⎭.于是SC=122⎛⎫-- ⎪⎝⎭,BC =(-32,2,0)DC=302⎛⎫ ⎪ ⎪⎝⎭.设平面SBC 与平面SCD 的 法向量分别为n 1=(x 1,1,z 1)n 2=(x 2,1,z 2). 由n 1⊥SC ⇒(x 1,1,z 1)122⎛⎫-- ⎪⎝⎭=0 n 1⊥BC ⇒(x 1,1,z 1)302⎛⎫- ⎪ ⎪⎝⎭=0 111111202302x z x x z ⎧⎧-+==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪-+==⎪⎪⎩⎩. 由n 2⊥SC ⇒(x 2,1,z 2)122⎛⎫-- ⎪⎝⎭=0 N 2⊥DC ⇒(x 2,1,z 2)302⎛⎫ ⎪ ⎪⎝⎭=0 222221202302x z x x z ⎧⎧-+==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩于是n 1=⎝⎭,n 2=3⎛- ⎝. ∴n 1 ⋅n 2=1571343-++=,而 ∣n 1∣=3,32)(∣n 2∣6=. cos ∠(n 1 ,n 2)=由于原二面角是钝二面角,故其大小为:π-. 【评注】本题也可用直接法求解.但计算量却大得多.方法是:如图:作BF ⊥SC 于F ,FG ⊥SC ,交CD 延长线于G ,连BG ,容易求出∠SCD=α,则cos α可求.以下分别求出BF ,FG ,BG 之长,即可用余弦定理求出∠BFG 之值.【小结】以上介绍的求二面角大小的三种主要方法各有优长.一般地说,向量法比较容易操作,但有时计算繁杂,对于那些不能直接建立坐标系的习题尤其如此;直接法与投影法技巧性较高,平时学习备考多作训练以提高能力,临考时则有事半功倍之效.S A B CD EαF G。
立体几何向量法求二面角一、引言在几何学中,二面角是指两个平面或者一个平面和一个直线之间的夹角。
它是描述多面体中相邻两个面之间的夹角的重要参数。
在工程学、物理学和化学等领域,求解二面角是非常常见的问题。
本文将介绍立体几何向量法求解二面角的方法。
二、立体几何向量法立体几何向量法是一种非常有效的求解二面角的方法。
它基于向量叉积和点积的运算,通过将多面体分解成若干个三角形来计算二面角。
1. 向量叉积向量叉积是两个向量所构成的新向量,其大小等于两个向量所构成平行四边形的面积,方向垂直于这两个向量所构成平行四边形所在平面。
设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的叉积c = a × b定义为:c = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)其中c表示a和b所构成平行四边形所在平面上一条垂直这个平行四边形的向量。
2. 向量点积向量点积是两个向量所构成的标量,其大小等于两个向量夹角的余弦值乘以两个向量的模长之积。
设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的点积c = a · b定义为:c = a1b1 + a2b2 + a3b3其中c表示a和b之间夹角的余弦值乘以它们的模长之积。
3. 二面角计算公式二面角可以通过计算相邻两个面法线向量之间夹角的余弦值来求解。
具体地,设有一个多面体,其中相邻两个面A和B所对应的法线分别为nA和nB,则它们之间的二面角θAB可以通过以下公式计算:cosθAB = -nA·nB / |nA||nB|其中“·”表示向量点积,“| |”表示向量模长。
4. 多面体分解在实际问题中,通常需要将多面体分解成若干个三角形来计算二面角。
具体地,考虑一个四面体(如图1),其中相邻两个三角形ABC和ABD所对应的法线分别为nABC和nABD,则它们之间的二面角θABC-D可以通过以下公式计算:cosθABC-D = -nABC·nABD / |nABC||nABD|其中“·”表示向量点积,“| |”表示向量模长。