结构动力学-分布参数体系
- 格式:pdf
- 大小:11.23 MB
- 文档页数:94
结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。
它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。
结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。
结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。
这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。
因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。
结构动力学的理论基础是力学、振动学和数学分析等。
力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。
在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。
在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。
质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。
通过对这些参数的建模,可以得到结构的动力学方程。
结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。
通过对这两方面的研究,可以得到结构的振动特性和响应情况。
总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。
同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。
§概述结构设计的一个重要内容是强度设计,而结构强度设计特别是飞机、汽车等航行器的强度设计已经从过去的结构静强度设计思想,发展到现在的结构动力学设计概念,所谓的结构动力学设计,是指按照对结构动力学特性指标的要求,对结构进行设计,以满足对振动频率、振动响应以及振动稳定性边界的要求。
目前,结构动力学设计的概念正逐渐被人们所接受,各种动力学设计技术已逐渐发展起来并应用到结构设计的工程实践中。
一般所谓的结构动力学设计,实际上是结构动力学优化设计。
结构动力学优化设计的研究原则上包括三方面的内容:(1)在给定频率和响应控制设计要求下,对结构的构型或布局进行设计优选;(2)在确定结构布局或构型后,对有关的结构设计参数进行设计优选;(3)在基本结构设计确定后,如有必要,还应进行附加质量、附加刚度及附加阻尼的设计优选,或附加其它类型的振动控制措施。
但是,目前结构动力学设计的研究和应用水平,尚不能提供上述各方面的设计方法。
大多数的研究都集中在前两方面的研究内容上,即针对给定结构的构型和布局设计,按照结构动力学分析和优化设计的方法来对有关的结构设计参数进行设计优选,或者基于已按其它方面要求确定的基本结构的设计参数,进行结构动力学优化设计和设计修改。
而上述第三方面内容的研究和应用,现已经纳入到结构振动控制研究的范畴。
显然,对于确定的结构布局形式,无论是进行结构的频率控制设计或是进行在给定载荷下的响应控制设计,或者两者的联合控制设计,都属于结构动力学中的逆问题。
对工程实际中复杂结构的振动逆问题,只能借助于有关的近似方法。
目前最有效的方法,就是数学中得到了很好发展的最优化方法,它成为结构动力学设计的一个有效手段。
在第八章中介绍的结构参数灵敏度分析、参数摄动分析以及结构动力学修改等近似方法,也构成了结构动力学设计的基础。
本章主要介绍结构动力学设计中常用的一些优化方法。
【结构动力学设计的必要性】过去对各种航行器的结构设计,都是按照静强度的思想进行设计,直到使用中出现各种振动故障问题时,才着手进行排故处理,一般对结构的振动问题没有进行事先估计,也没有采取相应的设计措施,因而在使用中最先暴露的是各种振动故障,即结构动力学问题。
结构动力学研究相关影响因素归纳结构动力学是研究结构在外部荷载作用下的振动特性和响应行为的学科。
在结构动力学研究中,有许多因素会对结构的振动特性产生影响。
本文将对结构动力学研究中的相关影响因素进行归纳和分析。
1. 结构的动力学性质结构的动力学性质是指结构固有的振动特性,包括固有频率、固有模态及其振型等。
这些特性受到结构的几何形状、材料的力学性质以及结构的支撑约束等因素的影响。
结构的刚度、质量和阻尼等参数也会影响结构的动力学行为。
2. 外部荷载外部荷载是结构动力学研究中的重要因素之一。
外部荷载可以分为静力荷载和动力荷载两类。
静力荷载包括自重、附加荷载和预应力等,在结构动力学中主要用于计算结构的静态与稳定性。
动力荷载包括地震荷载、风荷载和人员活动荷载等,会导致结构的动态响应,需要进行动力学分析和设计。
3. 地基和基础结构的地基和基础是承受结构荷载的重要组成部分,它们的性质对结构的振动特性有着重要的影响。
地基的刚度、材料的阻尼以及稳定性对结构的动力响应有直接影响。
此外,地基的类型和建筑地区的地质条件也会对结构的振动特性产生重要影响。
4. 结构材料与损伤结构材料的力学性质与结构的动力学行为有密切关系。
材料的强度、刚度、阻尼和耗能能力对结构的振动特性有显著影响。
此外,材料中可能存在的缺陷、劣化和损伤也会对结构的动态性能产生不可忽视的影响。
因此,在结构动力学研究过程中,需要对结构材料的力学性能进行准确评估和选用。
5. 结构的几何形状和刚度分布结构的几何形状和刚度分布对结构的动力学性能有直接影响。
结构包括梁、柱、框架、板壳等多种组成部件,它们的几何形状和布置方式会影响结构的刚度和动力响应。
合理的几何形状设计和刚度分布可以改善结构的动力学性能,减小结构的振动响应。
6. 结构的阻尼与控制阻尼是指结构在振动过程中能量损耗的能力,是结构动力学研究中的重要参数。
阻尼的大小和类型会直接影响结构的振动衰减。
结构中的主要阻尼机制包括结构材料的内部阻尼、流体阻尼和附加阻尼等。
结构动力学第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
中国海洋大学本科生课程大纲一、课程介绍1.课程描述:结构动力学是研究工程结构在循环荷载作用下的动力响应,与弹性动力学和机械振动具有相同的理论体系,只因他们的研究对象和/或研究内容不同而分为三门独立的课程。
弹性动力的研究对象为三维弹性体,与弹性力学的研究对象相同,而结构动力学的研究对象为特殊的三维弹性体,即弹性体的某一维尺寸远远大于(杆、梁)或小于(板)其它两维尺寸,因此,与结构力学的研究对象相同。
弹性动力学的研究内容是弹性波在弹性体中的传播,并不涉及弹性体的变形(位移),而结构动力学则研究结构在动力作用下的变形,包括位移及相应的速度和加速度,而不涉及波的传播问题。
机械振动的研究对象是机械装置和机构,研究内容与结构动力学相同。
因此,从理论方法上来说,结构动力学与机械振动两门课程是相同的。
2.设计思路:结构动力学是船舶与海洋工程专业选修课,通过该课程学习使学生掌握结构动力学的基本理论及分析计算方法,为后续的海洋工程结构动力分析和结构振动测试技术等课程以及毕业设计打下良好的基础。
其基本要求为:掌握线性系统的单自由度系统、多自由度系统的动力特性和动力相应的分析计算方法,了解分布参数系统的分析计算- 1 -方法,了解非线性系统振动和随机振动的基本概念和基本方法。
能够运用所学知识进行工程结构的动力分析计算。
3. 课程与其他课程的关系结构动力学中的一些基本概念与结构力学是不同的,一个最简单的例子是关于自由度的概念,也就是说静力自由度和动力自由度是两个完全不同的概念。
众所周知,一个结构的静力自由度必须是小于或等于零的,即所谓的静定和超静定结构,否则就不是结构而是机构。
也就是说,结构力学中的自由度(静力自由度)是刚体自由度。
而结构动力学中所说的自由度(动力自由度)是不包括结构刚体自由度在内的弹性体变形自由度,它是描述弹性体振动的参数。
刚体自由度是由结构的约束条件唯一确定的,而动力自由度则是由结构的质量分布唯一确定的。
土木工程中的结构动力学分析
结构动力学分析是土木工程中一个重要的研究领域,主要用于确定结构在动荷载作用下的反应规律,以便进行合理的动力设计。
结构反应是指结构的位移、速度、加速度、内力等,也称为结构响应。
在结构动力分析中,通常将质量的位移作为求解时的基本未知量,当质量的位移求出后,即可求出其他反应量,如速度、加速度、内力等。
因此,确定体系上有多少独立的质量位移对问题的求解甚为关键,这个问题归结为振动自由度问题。
在振动过程中的任一时刻,确定体系全部质量位置所需的独立参数个数,称为体系的振动自由度。
在结构动力分析中,要确定体系中所有质量的运动规律,需建立质量运动与动荷载及结构基本参数间的关系方程,即运动方程。
结构动力学分析类型包括:模态分析、谐响应分析、响应谱分析、随机振动响应分析、瞬态动力学分析、刚体动力分析、显式动力分析等。
以上信息仅供参考,如有需要,建议咨询专业人士。
广义力:1()Nii i ixiyj jjji x y z Q FF q q q =∂∂∂=++∂∂∂∑ Lagrange 方程:()jjjjdT T V Q dtq q q∙∂∂∂-+=∂∂∂临界阻尼:22n cr c m ω==阻尼比:2crnc c c m ζω==对数衰减率:12lni i u u πζδ+==阻尼比:/2δπζ=阻尼比:1ln2j i j u ju ζπ+≈动力放大系数:021d stu R u ==力的传递率:Tmax 0f TR=P =位移的传递率:t d g uTR R u ==Duhamel 积分:1()()sin[()]t n n u t P t d m τωττω=-⎰()1()()sin[()]n tw t D Du t P et d m ζττωττω--=-⎰两个自由度体系的两个自振圆频率:1/212211212k k k m m ω⎛⎫⎡+ ⎪⎢=+- ⎪⎢ ⎪⎣⎝⎭1/2 12221212k k km mω⎛⎫⎡+⎪⎢=++⎪⎢⎪⎣⎝⎭两个自由度体系的运动方程的一般解:(1)(2)1111122sin()sin()u t tφωθφωθ=+++(1)(2)1211222sin()sin()u t tφωθφωθ=+++广义特征值求解问题:2[][]0K Mω-=振型的正交性:{}[]{}{}{}[]{}{}Tm nTm nM m nK m nφφφφ=≠=≠无阻尼体系动力反应的振型叠加法:[]{}[]{}{}{}[]{}[][]{}[][]{}{}[][][]{}[][][]{}[]{}{}[]{}{}[]{}{}{}[]201()()()1()()sin ()TTTTn n n Tnn nTn nn n n n nnn n n nt n n n n nM u K u P u q M q K q P M q K q P M M K K P P M q K q P q t q t P t M q t P t d M φφφφφφφφφφφφφωτωττω∙∙∙∙∙∙∙∙∙∙+==+=+====+=+==-⎰Newmark-β法的基本假设:()()()()1110112201/2i i a u u a u u γγγβββ++=-+≤≤=-+≤≤Newmark-β法求解过程:(1) 基本数据准备和初始条件计算: 1) 选择时间步长△t 、参数β和γ,并计算积分常数()012324567111;22;1;2a a a a t ttt a a a t a t γββββγγγγββ====∆∆∆⎛⎫∆==-=∆-=∆ ⎪⎝⎭;;-1;-1;。