有理数的乘方1
- 格式:doc
- 大小:184.03 KB
- 文档页数:5
1.5.1有理数的乘方(1)一、教学目标1.知识与技能:掌握理解乘方的意义以及几个相关的概念,正确进行乘方运算。
2.过程与方法:经历折纸数学游戏的过程,迁移正方形面积正方体体积的表示,类比得到乘方的表示,发展观察归纳总结能力。
3.情感态度价值观:体会乘法与乘方的关系,感受事物之间的普遍联系。
二、教学重难点分析1.教学重点:理解乘方的意义,能利用乘方运算法则进行有理数的乘方运算。
2.教学难点:有理数乘方的计算法则的探索及利用法则进行计算三、教学过程1.情境引入教师提出折纸游戏,每对折一次,层数变为原来的两倍,如下:次数层数1 224=2×238=2×2×2416=2×2×2×2532=2×2×2×2×2……302×2×2×…×230个2相乘思考:当对折30次后,层数变为30个2相乘,那么有没有一种更简便的方法来表示30个2相乘呢?引出课题:有理数的乘方(1)2.定义生成思考:讲到乘方,我们联想到了一个方的概念,正方形和正方体,边长为a,它们的面积和体积分别是什么?如何表示?学生说,教师板书:2a a a⋅=(读作a的平方或a的二次方)3⋅⋅=(读作a的立方或a的三次方)a a a a又例如:4记作,读作“2的四次方”(2)(2)(2)(2)(2)--⨯-⨯-⨯--52222222()()()()()()-5555555-⨯-⨯-⨯-⨯--记作,读作“的五次方” 猜想:假设a a a a ⋅⋅⋅= 4a 读作 a 的四次方 ...a a a ⋅⋅⋅ n a读作 a 的n 次方n 个总结:一般地,n 个相同的因数a 相乘,即...a a a ⋅⋅⋅,记作n a ,读作“a 的n次方”定义:求n 个相同因数的积的运算,叫做乘方........a a a =n 个说明:当n a 看作a 的n 次方的结果时,也可读作a 的n 次幂。
●课题有理数的乘方(一)●教学目标(一)教学知识点1.有理数乘方的意义.2.能进行有理数的乘方运算.(二)能力训练要求1.在现实背景中,理解有理数乘方的意义.2.能进行有理数的乘方运算.(三)情感与价值观要求通过师生共同交流,渗透利用数学知识解决实际问题的思想,以激发学生学习的兴趣,树立解决问题的信心.●教学重点有理数乘方的意义.●教学难点1.理解有理数乘方的意义上有困难.2.合理进行乘方运算.●教学方法讲练结合法●教具准备细胞分裂示意图投影片四张第一张:练习(记作§2.10.1 A)第二张:例1(记作§2.10.1 B)第三张:例2(记作§2.10.1 C)第四张:法则(记作§2.10.1 D)●教学过程Ⅰ.创设情景问题,引入课题[师]我们知道,每个生物体都是由细胞组成.动物由动物细胞组成,植物由植物细胞组成.活的细胞和生物体一样,也经过生长、衰老、死亡几个阶段.细胞本身的繁殖是以细胞分裂方式进行的.大家来观察一幅某种细胞分裂示意图:(出示“细胞分裂示意图”)这种细胞每过30分钟便由1个分裂成2个.想一想:经过5小时,这种细胞由1个能分裂成多少个?[生]1个细胞30分钟后分裂成2个,1个时分裂成4个,1.5小时后分裂成8个,2小时后分裂成16个,……,5小时后,这种细胞由1个能分裂成1024个.[师]对,1个细胞30分钟后分裂成2个,这是第一次分裂;1小时后分裂成4个,可以写成2×2,这是第二次分裂,1.5小时后分裂成8个,可写成2×2×2,这是第三次分裂,2小时后分裂成16个,也可写成2×2×2×2,这是第四次分裂,依次类推,想一想:5小时要分裂多少次?[生甲]5小时要分裂10次.[生乙]老师,我知道了,经过一次细胞分裂,1个可分裂成2个,经过二次分裂,1个可分裂成2×2个,经过三次分裂,1个可分裂成2×2×2个,这样依次类推,经过十次这样的分裂,1个便可分裂成[师]乙同学分析得很好,经过十次分裂后,1个细胞可以分裂成:个,但10个2相乘写起来挺麻烦的,为了简便,可将记为210,210表示有10个2相乘,我们把这种运算叫乘方.今天我们就来探讨有理数的乘方.Ⅱ.讲授新课[师]在小学中,我们把a×a记作a2,读作a的平方,或a的二次方.想一想:a×a 表示什么?[生]表示边长为a的正方形面积.[师]对,还把a×a×a记作a3,读作a的立方,或a的三次方.那a×a×a表示什么?[生]表示棱长为a的正方体的体积.[师]很好,刚才我们又把记作210.一般地,我们有:n个相同的因数a相乘,记作a n,即:这种求n个相同因数a的积的运算叫做乘方(Power).乘方的结果叫做幂(Power).在a n中,a叫做底数(base number).n叫做指数(exponent).a n读作a的n次方.a n看作是a的n 次方的结果时,也可读作a 的n 次幂.在这儿需要注意:乘方是一种运算,幂是乘方运算的结果.如:在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂. 下面我们做一练习来熟悉这些概念(出示投影片§2.10 A ),口答: 1.填空: (1)(-1)12的底数是_____,指数是_____. (2)(-3)11表示_____个_____相乘. (3)(-21)5的指数是_____,底数是_____. (4)7.54的指数是_____,底数是_____. [生](-1)12的底数是-1,指数是12. (-3)11表示11个-3相乘. (-21)5的指数是5,底数是-21, 7.54的指数是4,底数是7.5.[师]很好.那5的底数是什么?指数是什么? [生]5的底数是5,没有指数. [师]对吗? ……[师]在这里需要注意:一个数可以看成这个数本身的一次方.如:5就是51,指数1通常省略不写.大家也可以这样理解:指数就是指相乘的因数的个数,指数是1,就是指只有一个因数.a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算. 下面通过例题来熟悉有理数的乘方运算.(出示投影片§2.10 B )[例1]计算:(1)53; (2)(-3)4; (3)(-21)3解:(1)53=5×5×5=125. (2)(-3)4=(-3)·(-3)·(-3)·(-3)=81. (3)(-21)3=(-21)·(-21)·(-21)=-81注意:(1)当底数是负数或分数时,书写时一定要先用小括号将底数括上,再在其右上角写指数.如:(-3)4不能写成-34,(-21)3不能写成-213. (2)在不会引起误解的情况下,乘号也可以用“·”表示.例如:(-3)×(-3)×(-3)×(-3)×(-3) 可写成:(-3)·(-3)·(-3)·(-3)·(-3)接下来,我们做一练习来熟悉有理数的乘方运算(出示投影片§2.10 C )1.计算: (1)(-1)10; (2)(-1)7; (3)83; (4)(-5)3; (5)(-0.1)3;(6)[生]解:(-1)10=1; (-1)7=-1;83=512;(-5)3=-125; (-0.1)3=-0.001;(-21)4=161; 102=100;103=1000;104=10000;(-10)2=100;(-10)3=-1000; (-10)4=10000[师]很好,大家都注意了底数是负数的乘方的表示.下面我们来观察刚才练习题的结果,你能发现什么规律?可互相交流.[生]正数的任何次幂都是正数;负数的偶次幂是正数,负数的奇次幂是负数. [师]对.大家从计算结果中,归纳出乘方运算的符号法则:(出示投影片§2.10 D )很好.大家再想一想:0的任何次幂等于多少?1的任何次幂等于多少?以10为底数的幂有何特点?[生]由有理数的乘法可以得到:0的任何非零次幂等于0,1的任何次幂等于1. 10的几次幂,在1的后面有几个0.[师]这位同学总结得非常正确.下面,我们通过课堂练习进一步熟悉有理数乘方的概念及其运算.Ⅲ.课堂练习 课本P 73 随堂练习 1.(1)在74中,底数是_____,指数是_____.(2)在(-31)5中,底数是_____,指数是_____. 答案:(1)7,4;(2)-31,52.计算:(1)(-3)3;(2)(-1.5)2;(3)(-71)2解:(1)(-3)3=(-3)·(-3)·(-3)=-27 (2)(-1.5)2=(-1.5)·(-1.5)=2.25 (3)(-71)2=(-71)·(-71)=4913.一个数的平方为16,这个数可能是几?一个数的平方可能是零吗?答案:一个数的平方为16,这个数是4或-4.一个数的平方可能是零.0的平方是0. 4.看课本P 72~73 5.试一试设n 为正整数,计算: (1)(-1)2n . (2)(-1)2n +1.分析:n 为正整数时,2n 表示偶数,2n +1表示是奇数.所以由乘方的符号法则,即可得出.解:(-1)2n =1 (-1)2n +1=-1 Ⅳ.课时小结本节课主要学习了有理数的乘方的意义.有关概念及其有理数乘方运算.通过本节的学习,要明确乘方和加、减、乘、除一样,是一种运算,是求n 个相同因数的乘积的运算.乘方实质是一种特殊的乘法运算.幂与和、差、积、商一样,是乘方运算的结果.乘方运算与加减乘除的运算步骤一样,先确定符号,再计算绝对值.Ⅴ.课后作业(一)课本P 74习题2.13 1、2、3.3.1米长的小棒,第一次截去一半,第二次截去剩下的一半,如此截下去,第七次后剩下的小棒有多长?解:第七次后剩下的小棒有:(21)7=21×21×21×21×21×21×21=1281(米) (二)预习内容:课本P 75.准备一张白纸.Ⅵ.活动与探究1.如果|a +1|+(b -2)2=0,求(a +b )39+a 34的值.过程:让学生通过讨论、探索知道:任何一个数的绝对值是一个非负数;任何一个数的平方也是一个非负数;两个非负数的和等于0,则这两个数都为0.这样:a 、b 即可解出.结果:因为|a +1|+(b -2)2=0 所以a +1=0,b -2=0 即a =-1,b =2因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2. 2.用计算器补充完整下表:31 32 33 34 35 36 37 38 392781从表中你发现3的方幂的个位数有何规律?3225的个位数是什么数字?为什么?过程:让学生用计算器填完表后,认真观察,找出规律,根据规律,确定3225的个位数字.结果:31 32 33 34 35 36 37 38 39278124372921876561从表中发现3的方幂的个位数呈周期性变化,变化周期是4. 因为225=56×4+1,所以3225的个位数是3.●板书设计§2.10.1 有理数的乘方(一)一、乘方:二、例1例2●备课资料 参考练习题 1.选择题:(1)109表示( )A .10个9连乘B .10乘以9C .9个10连乘D .9个10连加(2)一个数的平方是正数,那么这个有理数的立方是( ) A .正数 B .负数 C .正数或负数 D .奇数 (3)一个数的平方等于它的倒数,这个数一定是( )A .0B .1C .-1D .2(4)计算(-1)2000+(-1)2001÷|-1|的值等于( )A .0B .1C .-1D .1或-1(5)关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂 答案:(1)C (2)C (3)B (4)A (5)D2.把下列各式写成乘方运算的形式,并指出底数、指数各是什么? (1)(-1.3)·(-1.3)·(-1.3)·(-1.3) (2)51×51×51×51×51×51 答案:(1)(-1.3)(-1.3)(-1.3)(-1.3)=(-1.3)4,其中,底数是-1.3.指数是4.(2)51×51×51×51×51×51=6)51(,其中:底数是51,指数是6. 3.计算:(1)(-5)2; (2)(-43)3;(3)(-101)4; (4)5×(-51))3.答案:(1)25 (2)-6427) (3)100001) (4)-251。
有理数的乘方(学案)
一般地,我们有:n 个相同的因数a 相乘,即
个
n a a a a ⋅⋅,记作n
a 例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4。
这种求几个相同因数的积的运算,叫做乘方(involution),
乘方的结果叫做幂(power)。
在a n 中,a 叫作底数,n 叫做指数, a n 读作a 的n 次方,a n
看作是a 的n 次方的结果时,也可 读作a 的n 次幂。
问:(1)2×3与23相同吗?(2)23与32相同吗?(3)(-3)4与-34相同吗?为什么? 练习:
1、把下列各数写成数的乘积的形式:
(1)53=_______;(2)(-7)4=_______;(3)(-12
)5=______
2、把下列各数写成乘方的形式:
(1)3×3=______; (2)2×2×2=______;
(3)(-5)×(-5)×(-5)×(-5)=__; (4)(-0.6)×(-0.6)×(-0.6)=__. 3、填空:
(1)94
的底数是___,指数是___,幂是___,读作_______; (2)(-7)3的底数是__,指数是__,幂是___,读作_______; (3)8的底数是___,指数是___,幂是___,读作_______.
4、填表 乘方 5
4
-
5
)
4(-
2
5
3
3)3
5( n
a
a
底数 指数
5、填表
a -4 2
11
-
0.1 0 -1 -1
n
2 3 4 7 101 n
n
a
5、计算:
(1)63= (2) 05
=
(3)(-5)3=(4)(-1
2
)4=
6、探究题:
(1)直接写出计算结果:
(-1)2=(-1)3=(-1)4=(-1)5=(-1)6= (-1)7= (-1)8= (-1)9=(2)从上面四道题,你发现:当底数是负数,指数是奇数时,乘方的结果是___数,也就是说,负数的奇次方是___数;当底数是负数,指数是偶数时,乘方的结果是___数,也就是说,负数的偶次方是___数.
7、不计算,判断下列乘方结果是正数还是负数:
83,(-8)3,(-8)4,(-8)16,(-8)17.
8、不计算,判断下列各数是正数还是负数:
34,(-3)4,-34,-(-3)4,(-4)3,-43,-(-4)3.
9、直接写出下面乘方的结果:
(1)(-2)3=(2)(-3)2=(3)(-3)3=(4)(-1)7=
(5)(-1)8=(6)(-1)9=(7)0.12=(8)0.13=
(9)0.14=(10)(-10)3=(11)(-10)4=(12)(-10)5=10、计算:
(1)(-1)10×2+(-2)3÷4;(2)(-5)3-3÷(-1
2
)4;
(3)11
5
×(
1
3
-
1
2
)×
3
11
÷
5
4
;(4)(-10)4+[(-4)2-(3+32)×
2].
本讲过关题:
1.(-3)4表示()
A.-3×4 B.4个(-3)相加 C.4个(-3)相乘 D.3个(-4)相乘2.-24表示()
A.4个-2相乘 B.4个2相乘的相反数
C.2个-4相乘 D.2个4的相反数
3、下列各组的两个数中,运算后结果相等的是()
A.23和32 B.-42和(-4)2
C.-23和(-2)3 D.(-2
3
)3和-
3
2
3
4、下列各组数中,是负数的是()
A .(-2005)2
B .-(-2005)3
C .-20053
D .(-2005)4
5、一个数的立方是它本身,那么这个数是( )
A 、 0
B 、0或1
C 、-1或1
D 、0或1或-1
6、下列说法中正确的是( )
A 、23表示2×3的积
B 、任何一个有理数的偶次幂是正数
C 、-32
与 (-3)2
互为相反数 D 、一个数的平方是
9
4,这个数一定是
3
2
7、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4 D 、2或-2 8、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
9、对任意实数....a ,下列各式一定不成立的是( )
A 、22)(a a -=
B 、33)(a a -=
C 、a a -=
D 、02≥a 10、若两个有理数的平方相等,则( )
A .这两个有理数相等;
B .这两个有理数互为相反数;
C .这两个有理数相等或互为相反数;
D .都不对 11、n 为正整数,(-1)2n
+(-1)
2n+1
的值为( )
A .0
B .-1
C .1
D .-2
12、|x -|+(2y +1)2
=0,则x 2
+y 3
的值是( )
错误!未找到引用源。
A . 错误!未找到引用源。
B .错误!未找到引用源。
C . 错误!未找到引用源。
D .
13、一根1m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的长度为( )
A .0.53m
B .0.55m
C .0.015625m
D .0.512m
1、计算-24
=_____,
2
2
3
=________.
2、在-32
中,底数是________,指数是_______,意义是________. 3.平方等于它本身的数是_________.
4.-22+(-2)2+(-2)3+23
的结果是( ) 5.-16÷(-2)3-22×(-12)的值是( ) 6.计算(-0.1)3
-
14
×(-
2
5
)2
=_______.
7、观察下列算式
1
2
3
4
5
6
7
8
22,24,28,216,232,26421282256========⋅⋅⋅,,,
通过观察,用你所发现的规律写出98的末位数是_____________. 8、=⎪⎭⎫ ⎝⎛-3
43 ,=⎪⎭
⎫
⎝⎛-3
43 ,=-433
;
9、若032>b a -,则b 0(填﹥﹦﹤);若n 为正整数,(-1)2n +(-1)2n+1= 10、若92=x ,则x = ;若83-=a ,则a = 11、当a=_______时,式子5+(a -2)2
的值最小,最小值是______
1.计算: (每小题2分,共6分)
(1)-(-3)3; (2)(-34
)2; (3)(-
23
)3.
2、计算: (每小题5分,共20分)
(1)-1-1÷32×2
13
+2; (2)(-3)×(-2)2-(-1)99÷
12
;
(3)(-10)2-5×(-3×2)2+23×10.(4)(-4)2÷513
×(-2)2+8+(-2)2×(-
23
);
3.a 与b 互为相反数,c 与d 互为倒数,│x │=1,求x 2-(
b
a +cd )x+(a+
b )2004+(-cd )
2005
的值(8分)
4、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过多长时间?。