有理数的乘方(1)
- 格式:doc
- 大小:141.50 KB
- 文档页数:2
有理数乘方(1)教案11有理数的乘方(1)一、教学目的:1、通过现实背景,使学生理解并掌握有理数乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程。
2、通过尝试过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想、形成数感、符号感,发展抽象思维。
二、教学重点难点:重点:理解有理数乘方的意义和表示,会进行乘方运算。
三、教学设计:(一)、复习旧知,引入新课1、有理数加法和减法法则?两个学生回答2、将一张作业本的纸对折30次,你们猜一猜它有多厚?学生们可讨论、想象,教师在此不作任何解答。
3、我们小学学过相同加数的简便运算用乘法,那么相同因数的乘法的简便运算又可用什么方法呢?(二)、讲授新课:1、通过探索,得出乘方的意义由边长为2的正方形,面积:422,棱长为2的正方体,体积:8222为了简便,将它们分别记作322,2,读作“2的平方”(或2的二次方),“2的立方”(或2的三次方)同样:的四次方”,读作“)记作(22),2()2()2()2(4,)的五次方”,读作“())记作(()()()()(52525252525252512aaaaa可以记作什么?读作什么?师提出:aaaa(n个a,n为正整数)呢?生归纳总结:(抽学生回答)可以记作na,读作a的n次方。
板书①一般地,n个相同的因数a相乘,即aaaa(n个a),记作na,读作“a的n次方”。
②定义:求n个相同因数的积的运算,叫作乘方。
乘方的结果叫做幂,在na中,相同的因数a叫底数,(a可取任何有理数),n叫作指数,(n取正整数)。
注意:⑴乘方是一种运算,⑵幂是乘方的结果,na看作是a的n的次方的结果时,也可读作a 的n的次幂。
(没有特别说明:a的n的次方和a的n次幂,两种读法都正确。
)⑶单独的一个数可以看作这个数本身的一次方。
例:3就是13,指数是1的通常省略不写。
2、应用乘方的意义回答下列的问题(1)、32读作________,或________,或_______,幂是______;2)2(的底数是_______,指数是_____,幂是_______;3)21(的底数是_______,指数是_____,幂是_______;431)(读作________,底数是_______,指数是_______。
一次二次8个2个4个《有理数的乘方》(一)教案一、教学目标。
1、知识与技能目标:理解并掌握乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
2、过程与方法目标:在生动的情境中让学生获得有理数乘方运算的初步经验;给学生充分观察、分析、概括的机会,让学生以动脑、动手、动口的方式培养自己探索归纳的能力,并从中感受“类比”的研究方法和“化归”的数学思想。
3、情感与态度目标:学生通过观察、分析、概括,总结出有理数乘方运算中符号的确定方法,从而感受探索的乐趣,增强数学学习的信心。
二、教学重难点。
教学重点:正确理解乘方的意义,掌握乘方的运算;教学难点:熟练掌握负底数幂的乘方运算。
三、教学方法。
在教学活动中,以学生为主体,通过创设合理的问题情境,给学生提供讨论交流的平台,我采用启发诱导式与自主探究式相结合的教学方法。
四、教学过程。
1、创设情景,引入新知首先提出问题一:下面是细胞分类示意图。
思考:第10次分裂会有多少个细胞?2×2×2×2×2×2×2×2×2×2或2×2×…×2 接着提问:对于上面的算式有没有简洁的表示方法呢?学生可能会得到以下的表示方法:2 ×102 ×(10)2(10)(10)2102102102102102……10个2n a 底数乘方的结果叫做幂然后提出问题二:边长为2的正方形面积以及边长为2的正方体体积分别是多少?22222×2=2222×2×2=3S=?V=?然后引导学生进行类比不难得到: 2×2×…×2 =102 紧接着再提出问题:2×2×…×2 = ?a ×a ×a …×a =? 学生不难得到结果如下:2×2×…×2 = 2na ×a ×a …×a =n a由此成功地引出乘方的定义,进入环节二的学习。
北师大版数学七年级2.9有理数的乘方(1)教学设计法。
课讲授新课2、出示课件想一想:教师引导学生对比、思考?某种细胞每30分钟便由一个分裂成两个. 经过3小时这种细胞由1个能分裂成多少个?分裂方式如下所示:分析:教师引导学生思考:请比较细胞分裂2次后的个数式子:2×2和细胞分裂3次后的个数式子: 2×2×2.1. 这两个式子有什么相同点?它们都是乘法; 并且它们各自的因数都相同.2.同学们想一想:这样的运算能不能像小学学过的平方、立方那样简写呢?2×2 =222×2×2 = 232×2×……×2 =?(10个)师生总结出:一般地,n个相同的因数a相乘,记作a n.学生自主观察、分析、对比、思考、总结,体会有理数的乘方意义,分组交流、汇报(a n)表示意义,然后教师加以矫正主要为了鼓励学生主动思考如何几个相同因数的乘积.以(a n)的意义,探究问题的形式引导学生逐步深入的观察思考,鼓励学生归纳,概括出(a n)表示意义,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
求n个相同因数的积的运算,叫做乘方.a n读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂比一比:底数是负数或分数时,要用括号将底数括起来4. -25读作,底数是__ ,指数是___,意义是,用乘法形式表示 .5.在8中,底数是_____,指数是_____.一个数可以看作这个数的本身的一次方.3、出示课件:做一做:教师引导学生如何进有乘方运算:师生总结出:有理数的乘方运算:把乘方转化为乘法来计算;注意式鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点。
总结提高学生对有理数的乘方认知。
子的意义及指数的管辖范围.例2 :(1)-(-2)3(2)-24例3:教师引导学生:在乘方的运算中,先分析幂的含义,再进行计算.4、出示课件:试一试:解决:对折30次纸与珠穆朗玛峰谁高呢?把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度解: 0.1毫米=0.0001米纸对折30次的厚度:0.0001×230 = 107374.1824(米)107374.1824米> 8844.43米答:把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度比珠穆朗玛峰还高对本节知识进行巩固训练,进一步提高学生解决有理数乘方运算能力,培养学生分析问题、解决问题的能力。