液态金属凝固过程中的传热与传质
- 格式:doc
- 大小:296.00 KB
- 文档页数:4
液态金属凝固过程中的传热与传质摘要:液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织。
本文介绍了液态金属凝固的原理,凝固过程中传热“一热、二迁、三传”的特点,以及凝固过程中的传质及其基本问题。
传热与传质的研究方法包括解析法、实验法、数值模拟法等。
我国许多研究者对凝固过程中的传热和传质问题进行了研究,高新技术方面热质传递现象的机理和特有规律是今后重点发展的研究领域。
会形成一个间隙(也称气隙),因此这里的传热不知是一种简单的传导,而是同时存在微观的对流和辐射传热。
“三传”即金属的凝固过程是一个同时包含动量传输、质量传输和热量传输的三传耦合的三维传热物理过程。
在热量传输过程中也同时存在有导热、对流和辐射换热三种传热方式。
一个从宏观上看是一维传热的单向凝固的金属,由于凝固过程中的界面现象使传热过程在微观变得非常复杂。
当固/液界面是凹凸不平或生长为枝晶状时,在这个凝固前沿上,热总是垂直于这些界面的不同方位从液相传入固相,因而发生微观的三维传热现象。
在金属和铸型界面上的传热也不只是一种简单的传导,而是同时存在微观的对流和辐射传热。
图1 纯金属在铸型中凝固时的传热模型K-导热,C-对流,R-辐射,N-牛顿界面换热1.2金属凝固过程中的传质金属液凝固时出现的固相成分常与液相成分不同,引起固相、液相内成分分布的不均匀,于是在金属凝固时固相层增厚的同时出现了组分的迁移过程,即传质。
凝固过程的溶质传输决定着凝固组织中的成分分布,并影响到凝固组织结构。
金属的凝固过程,其传质问题直接和金属的凝固方式相关联,主要研究几种基本传质问题:①金属凝固过程中整个凝固体系内溶质的变化;②金属以平界面方式凝固时凝固过程的溶质变化;③金属以枝晶方式凝固时凝固过程的溶质变化。
平界面凝固过程中的传质与溶质再分配是最基本的传质问题,对许多复杂传质问题的研究是在此基础上进行的。
主要包括:(1)平衡凝固条件下的溶质再分配;(2)固相无扩散而液相均匀混合的溶质再分配;(3)固相无扩散,液相中有扩散而无对流的溶质再分配;(4)液相中部分混合(对流)的溶质再分配。
本章要点:主要讨论凝固过程的液体金属流动和金属的凝固传热特点固传热特点,,包括包括::4 凝固过程的液体金属流动和传热1(1) 枝晶间金属流动的速度方程枝晶间金属流动的速度方程;;(2) 铸锭凝固传热的微分方程及由此确定影响传热的主要因素传热的主要因素。
(3) 三种凝固方式(顺序凝固顺序凝固、、同时凝固同时凝固、、中间凝固)的区别及对应的控制方法在浇筑和凝固过程中在浇筑和凝固过程中,,液体金属时刻在流动 包括对流和枝晶间的黏性流动液体金属流动是一种动量传输过程液体金属流动是一种动量传输过程,,是铸锭成型是铸锭成型、、传热传热、、传质的必要条件浇筑和凝固过程中的特性1 凝固过程液体金属的流动是一种动量传输过程是一种动量传输过程。
浇注时流柱冲击引起的动量对流动量对流。
金属液内温度和浓度不均引起的1.1 液体金属的对流对流成因:3自然对流自然对流。
电磁场或机械搅拌及振动引起的强制对流。
对于连续铸锭对于连续铸锭,,由于浇注和凝固同时进行由于浇注和凝固同时进行,,动量对流会连续不断地影响金属液的凝固过程属液的凝固过程,,如不采取适当措施均布液流不采取适当措施均布液流,,过热金属液就会冲入液穴的下部。
动量对流强烈时动量对流强烈时,,易卷入大量气体易卷入大量气体,,增加金属的二次氧化增加金属的二次氧化,,不利于夹渣的上浮,应尽量避免应尽量避免。
立式半连续铸锭过程中立式半连续铸锭过程中,,在金属液面下垂直导入液流时在金属液面下垂直导入液流时,,其落点周围会形成一个循环流动的区域成一个循环流动的区域,,称为涡流区。
特征是在落点中心产生向下的流股的流股,,在落点周围则引起一向上的流股的流股,,从而造成上下循环的轴向循环对流。
流注冲击引起的对流4影响流注穿透深度因素影响流注穿透深度因素:: 浇筑速度 浇筑温度流注在液穴中的穿透深度:沿液穴轴向对流往下延伸的距离 流注落下高度 结晶器尺寸注管直径流注穿透深度随其下落高度的增加而减小流注下落高度增加,其散乱程度增大,卷入的气体多,气泡浮力对流注的阻碍作用增强浇筑速度增大浇筑速度增大,,流注穿透深度增加结晶器断面尺寸减小结晶器断面尺寸减小,,气泡上浮区域减小气泡上浮区域减小,,存留在流注点下方气泡数量相应增加量相应增加,,对流注阻碍作用增强对流注阻碍作用增强,,流注穿透深度减小结晶器断面尺寸减小结晶器断面尺寸减小,,流注落点周围的涡流增强流注落点周围的涡流增强,,流注轴向速度降低流注轴向速度降低,,穿透深度减小6轴向循环对流轴向循环对流,,还会引起结晶器内金属液面产生水平对流,其方向决定着夹渣的聚集地点其方向决定着夹渣的聚集地点。
液体金属处理中的传热传质研究摘要液体金属处理是金属材料加工和制造的重要工艺之一,其熔融状态下的物理和化学性质具有独特性,但其特殊的性质也带来了复杂的传热和传质过程。
本文对液体金属处理过程中的传热传质研究进行了综述,包括自然对流、强迫对流、辐射传热、多相传热、相变传热以及传质过程等方面,阐述了各种传热传质模型和相应的研究方法,为液体金属处理过程的优化提供了理论依据。
关键词:液体金属处理、传热传质、传热模型、传质模型、优化第一章绪论液体金属处理是指把金属在高温下熔融,进行浇注、铸造、锻造、轧制、挤压、拉伸等多种加工方法的工艺。
在液体金属处理过程中,热量的传递和物质的传输是必不可少的环节,因此传热传质研究是液体金属处理技术的基础之一。
传热传质研究不仅能够改善液体金属处理的工艺技术,还有助于提高加工工件的质量和生产效率。
第二章传热传质模型传热传质模型是对液体金属处理过程中热量和物质传递现象的描述和分析。
液体金属的传热传质过程复杂多样,存在自然对流、强迫对流、辐射传热、多相传热、相变传热等多种传热传质方式。
2.1 自然对流传热模型自然对流是指在温度差的作用下,由于热量的不均匀分布而形成的一种流动状态。
液体金属处理中的自然对流,通常伴随着温度场的非线性变化和较强的非线性耦合。
自然对流传热模型建立的核心是流体运动的动量传递方程和热传递方程。
2.2 强迫对流传热模型强迫对流是指机械或热力学作用下引起的流体运动。
液体金属处理中的强迫对流主要有气流或液流对液体金属表面的冷却、加热和搅拌等作用。
强迫对流传热模型建立的核心是Navier-Stokes方程和能量方程。
2.3 辐射传热模型辐射传热是指热量通过辐射作用而传递的物理过程。
液体金属处理过程中的辐射传热,实际上是由液体金属产生的热量向周围空气和固体传递的过程。
辐射传热模型的建立需要涉及真实物理场的射线互相作用方程和辐射传热方程。
2.4 多相传热模型多相传热是指液体金属处理过程中含有两种或两种以上的相的传热现象。
第五章 液态金属的传热与凝固方式1. 试分析铸件在金属型,砂型,保温型中凝固时的传热过程,并讨论在上述几种情况影响传热的限制性环节及温度场的特点。
答: (1)砂型:2λ 远小于1λ ,铸件冷却缓慢断面上的温差很小,而铸型内表面被铸件加热到很高的温度,而外表面仍处于较低的温度。
砂型本身的热物理性质是主要因素(限制环节)。
(2)金属型:a.铸件较厚,涂料较厚。
铸件的冷却和铸型的加热都不十分激烈,大部分温度降在中间层,而铸型和铸件上温度分布均匀。
传热过程主要取决于涂料层的热物理性质。
b.当涂料层很厚时,铸件的冷却和铸型的加热都很激烈,有明显的温度梯度界面热量很小,可忽略。
传热过程取决于铸件、铸型的热物理性质。
(3)保温型:与砂型情况类似,只是铸型比铸件的冷却更缓慢,铸型界面处温度梯度较大,而外部温度低(接近金属型后涂料)。
2.试应用凝固动态曲线分析铸件的凝固特征,根据铸件的动态凝固曲线能否判断其停止流动的过程。
答:①某一时刻的各区宽度,L 、L+S 、S 、L+S 宽度分别为,逐层、体积、中间凝固方式。
②结壳早晚:停止流动的过程:两线重合或垂直距离小,流动管道中晶体长大阻塞而停止流动。
两线垂直距离大,液体中析出晶体较多,连成网络而阻塞。
两线垂直中等,管道壁有一部分柱状晶,中心有等轴晶,使剩余的液体停止流动。
3. 试证明铁在熔点浇入铝制容器中,铝型内表明不会熔化。
已知:铁液熔点t 10=1539℃ λ1=23.26()k m w ⋅,k kg J C ⋅=9211,31kg 6900m =ρ铝液熔点660℃,λ2=23.26()k m w ⋅,k kg J C ⋅=9212,3kg6900m =ρ,t 20=20℃。
解:起始边界温度t F21202101b b t b t b t F ++=()()cc t p c b p c b 00F 2222111166064.642k 64.9152.174549.121572092732.1745427315399.121572.17459.12157<==+⨯++⨯=====λλ不会熔化。
液态金属凝固过程中的传热与传质摘要:液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织。
本文介绍了液态金属凝固的原理,凝固过程中传热“一热、二迁、三传”的特点,以及凝固过程中的传质及其基本问题。
传热与传质的研究方法包括解析法、实验法、数值模拟法等。
我国许多研究者对凝固过程中的传热和传质问题进行了研究,高新技术方面热质传递现象的机理和特有规律是今后重点发展的研究领域。
关键词:金属凝固;传热和传质;界面;溶质再分配在金属的热态成形过程中,常常伴随着金属液的流动、气体的流动、金属件内部和它周围介质间的热量交换和物质转移现象,即动量传输、热量传输和质量传输现象。
液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织[1-2]。
因此,只有正确和深入研究金属凝固过程中的传输现象,才能有助于建立正确的凝固过程理论模型。
1 金属凝固过程的传热与传质1.1 金属凝固过程中的传热在凝固过程中,伴随着潜热的释放、液相与固相降温放出物理热,定向凝固时,还需外加热源使凝固过程以特定的方式进行,各种热流被及时导出,凝固才能维持。
宏观上讲,凝固方式和进程主要是由热流控制的。
金属凝固过程的传热特点可以简明的归结为“一热、二迁、三传”[3-5]。
“一热”即在凝固过程中热量的传输是第一重要的,它是金属凝固过程能否进行的驱动力。
凝固过程首先是从液体金属传出热量开始的。
高温的液体金属浇入温度较低的铸型时,金属所含的热量通过液体金属、已凝固的固体金属、金属-铸型的界面和铸型的热阻而传出。
凝固是一个有热源非稳态传热过程。
“二迁”指在金属凝固时存在着两个界面,即固相-液相间界面和金属-铸型间界面,这两个界面随着凝固进程而发生动态迁移,并使得界面上的传热现象变得极为复杂。
图1为纯金属浇入铸型后发生的传热模型示意,由图可见在凝固过程中随着固相-液相间界面向液相区域迁移,液态金属逐步变为固态,并在凝固前沿释放出凝固潜热,并随着凝固进程而非线性地变化。
在金属凝固过程中,由于金属的凝固收缩和铸型的膨胀,在金属和铸型间形成金属和铸型间的界面,由于接触不完全,它们之间存在着界面热阻。
接触情况不断地变化,在一定条件下,会形成一个间隙(也称气隙),因此这里的传热不知是一种简单的传导,而是同时存在微观的对流和辐射传热。
“三传”即金属的凝固过程是一个同时包含动量传输、质量传输和热量传输的三传耦合的三维传热物理过程。
在热量传输过程中也同时存在有导热、对流和辐射换热三种传热方式。
一个从宏观上看是一维传热的单向凝固的金属,由于凝固过程中的界面现象使传热过程在微观变得非常复杂。
当固/液界面是凹凸不平或生长为枝晶状时,在这个凝固前沿上,热总是垂直于这些界面的不同方位从液相传入固相,因而发生微观的三维传热现象。
在金属和铸型界面上的传热也不只是一种简单的传导,而是同时存在微观的对流和辐射传热。
图1 纯金属在铸型中凝固时的传热模型K-导热,C-对流,R-辐射,N-牛顿界面换热1.2金属凝固过程中的传质金属液凝固时出现的固相成分常与液相成分不同,引起固相、液相内成分分布的不均匀,于是在金属凝固时固相层增厚的同时出现了组分的迁移过程,即传质。
凝固过程的溶质传输决定着凝固组织中的成分分布,并影响到凝固组织结构。
金属的凝固过程,其传质问题直接和金属的凝固方式相关联,主要研究几种基本传质问题:①金属凝固过程中整个凝固体系内溶质的变化;②金属以平界面方式凝固时凝固过程的溶质变化;③金属以枝晶方式凝固时凝固过程的溶质变化。
平界面凝固过程中的传质与溶质再分配是最基本的传质问题,对许多复杂传质问题的研究是在此基础上进行的。
主要包括:(1)平衡凝固条件下的溶质再分配;(2)固相无扩散而液相均匀混合的溶质再分配;(3)固相无扩散,液相中有扩散而无对流的溶质再分配;(4)液相中部分混合(对流)的溶质再分配。
对于枝晶凝固过程中的溶质传输,除液相流动引起长程溶质再分配外,溶质的传输主要是在枝晶本身和枝晶间的液相内进行的[4,6]。
枝晶凝固过程传质研究的主要目标是确定凝固过程的不同时刻析出固相的溶质质量分数及最终凝固组织中微观偏析。
常见的凝固并不是按平面界面进行的,而存在一个凝固区,即糊状区,在该区存在着传热与传质的偶合问题,需同时考虑传热和传质。
2 凝固过程中传热与传质的研究方法与现状液态金属凝固过程中传热与传质的研究方法有解析法、实验法和数值模拟法等。
解析法是直接从传热的基本方程出发,在给定的定解条件下,进行凝固过程温度场及其演变过的计算,求出温度场的解析解。
这些定解条件包括物理条件、几何条件、时间条件和空间条件。
解析解显然是比较理想的解,然而对于实际凝固过程,能获得解析解的情况非常少见,即使在最简单的条件下也需要引入许多假设。
实验法如测温法,是一种最通用的方法,通过向铸型中安放热电偶直接测出合金凝固过程中的温度变化情况。
测温法的主要技术包括热电偶布放位置选择及测温结果的处理。
其目标是用尽可能少的热电偶获得尽可能多的信息。
但对于尺寸太大或者尺寸过小的铸件凝固过程,采用测温放难度较大。
数值模拟法以传热基本方程和边界条件为基础,采用差分法或有限元法进行温度场的数值计算。
该方法基本原理简单,但运算技巧方面的问题较多。
对凝固过程需要考虑边界条件的处理和结晶潜热的处理。
武汉理工大学李明明[7]在深入研究金属凝固传热学的基础上,建立了凝固过程传热微分方程数学模型,总结求解微分方程的各种数值算法,并分析影响凝固传热的各边界条件,采用有限差分法对数学模型在时间及空间上进行离散化,建立了具有定解条件的差分方程。
针对不同材料传热特性不同的问题,建立对应铸件—铸型边界模型,并采用一个综合传热系数来表达边界处的传热特点。
采用温度回复法解决小结晶区间合金的潜热释放问题,对于具有一定结晶区间的合金则采用等价比热法进行处理,充分发挥两种方法的优点,提高计算的准确度。
对凝固潜热的释放模式进行研究,确定采用潜热释放与温度变化呈线性关系的模式进行近似计算。
同时,在用等价比热法处理潜热问题时,分六种情况对可能的计算结果进行讨论,并根据能量平衡原理,对计算结果进行修正,提高了处于凝固区间网格传热计算的精度。
北京科技大学聂红[8]等人建立了描述二元合金凝固的平面枝晶一维微观偏析数学模型,考虑溶质在固相中有限扩散,在液相中完全扩散。
通过数值模拟,分析比较了Al-Cu和Fe-C合金的微观偏析特性,将微观数值模型与宏观凝固实验的传热传质数学模型相耦合,实现了凝固宏微观复合尺度的全数值模拟。
研究表明,数值计算结果与实验数据吻合良好,证明微观模型能较准确地反映微观质量传输并能可靠地与宏观相变传热传质模型相耦合。
液态金属熔体中传热和传质过程的改变会影响晶体的形核和生长,从而影响凝固组织。
许多研究者采用材料制备新技术,来改变液态金属熔体的传热和传质过程,以实现形状控制、温度控制和凝固组织控制等作用。
在常规铸造凝固过程中,熔体通过铸型单向散热。
太原理工大学韩富银[9]等人采用电磁搅拌技术来改变镁合金熔体的传热与传质过程,促进柱状晶向等轴晶转变,细化宏观组织。
电磁搅拌强迫对流促进了过热熔体的热量耗散,凝固前沿熔体过冷度的提高有利于等轴晶核的形成。
在剧烈的搅拌作用下熔体各处温度及溶质分布基本上是均匀的,使初生相可在整个熔体内同时形核,形核后受到熔体流动的强烈影响,晶核在各个方向温度趋于均匀古冶界面的溶质浓度梯度减小,降低了成分过冷,因此将有利于形成等轴晶。
杨院生[10]等人运用非Fourier传热理论建立了金属快速凝固过程中的非平衡传热理论模型,包括非Fourier方程的建立、传热与相变模拟.模拟计算表明:①在溅射激冷条件下,界面换热系数越大,界面冷却速度和移动速度也越高,界面换热系数相同时,计算得到的界面冷却速度随着固-液界面高度的提高呈现先上升而后下降的变化趋势,计算得到的冷却速度值明显小于Fourier 定律的计算值;②在激光加热条件下,计算的界面移动速度在凝固开始时先急剧增加,然后渐趋平稳。
还表明,金属的过热度及过冷度与其热物性相关。
3 展望非平衡凝固如快速凝固、激光重熔及合金雾化冷却凝固等近代先进的材料成形技术中液态合金的凝固已不遵循热力学规律,对其传热和传质过程的研究是今后重点发展的研究领域,应着重于针对具体研究对象构建理论模型,探索更有效、更精确的实验方法和技术。
一些发达国家如美国,由于其高新技术发展快,水平高,在传热测试方法和手段、传热传质学研究和高新技术领域密切联系等方面均有着明显优势,因此在高新技术领域热质传递现象的机理和特有规律这方面,我们仍需继续努力。
参考文献[1]林柏年. 金属热态成形传输原理. 哈尔滨: 哈尔滨工业大学出版社, 2000.[2]张金山. 金属液态成型原理. 北京: 化学工业出版社, 2011.[3]胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000.[4]弗兰克·英克鲁佩勒. 传热和传质基本原理. 北京: 化学工业出版社, 2009.[5]赵镇南. 传热学. 高等教育出版社, 北京: 2008.[6]李汝辉. 传质学基础. 北京航空学院出版社, 北京: 1987.[7]李明明. 铸造凝固过程计算机数值模拟技术研究[D]. 武汉: 武汉理工大学, 2011.[8]聂红, 冯妍卉, 张欣欣. 合金凝固传热传质宏微观耦合数值研究及验证[J]. 热科学与技术,2006(1): 45-48.[9]韩富银, 张金山, 卢斌峰. 电磁搅拌对镁合金AZ91D凝固组织的影响[J]. 中国铸造装备与技术, 2007(2): 19-22.[10]杨院生, 童文辉, 陈晓明, 等. 金属快速凝固的非平衡超急速传热模型[J]. 金属学报,2003, 39(3): 249-253.。