分式方程应用行程问题
- 格式:ppt
- 大小:809.00 KB
- 文档页数:9
行程问题1.新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?解:设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,由题意,得200 x −2001.2x=2060,解得x=100,经检验,x=100是原方程的解,且符合题意,则1.2x=120.kk答:大货车的速度为100km/ℎ,小轿车的速度为120km/ℎ.【解析】设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,根据时间关系列出方程,解方程即可.本题考查了分式方程分应用、分式方程的解法;根据时间关系列出方程是解决问题的关键.2.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/ℎ,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:700t −7001.4t=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据平均速度=路程÷时间结合A车的平均速度比B车的平均速度慢80km/ℎ,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.3.列方程解应用题八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】解:设骑车学生的速度为xkm/ℎ,由题意得,10x −102x=13,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/ℎ.【解析】设骑车学生的速度为xkm/ℎ,则汽车的速度为2xkm/ℎ,根据题意可得,乘坐汽车比骑自行车少用20min,据此列方程求解.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.4.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时,求高铁的平均速度是多少千米/时?【答案】解:设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:520 x −4002.5x=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.【解析】设普通列车平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据乘坐高铁比乘坐普通列车少用3小时,列出分式方程,然后求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.5.一辆汽车计划从A地出发开往相距180千米的B地,事发突然,加速为原速的1.5倍,结果比计划提前40分钟到达B地,求原计划平均每小时行驶多少千米?【答案】解:设原计划平均每小时行驶x千米,则加速后平均每小时行驶1.5x千米,根据题意得:180x −1801.5x=4060,解得:x=90,经检验,x=90是原分式方程的根,且符合题意.答:原计划平均每小时行驶90千米.【解析】设原计划平均每小时行驶x千米,则加速后平均每小时行驶1.5x千米,根据时间=路程÷速度结合结果比计划提前40分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6.正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【答案】解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:3250.4x −325x=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.【解析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.7.一艘轮船在静水中的最大航速为32km/ℎ,它以最大航速沿江顺流航行96km所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【答案】解:设江水的流速为Vkm/ℎ,根据题意可得:9632+V =6432−v,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/ℎ.【解析】设江水的流速为Vkm/ℎ,则顺水速=静水速+水流速,逆水速=静水速−水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:逆水速度=静水速度−水流速度,顺水路程=静水速度+水流速度.8.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/ℎ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.【答案】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:6002x +45=480x,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【解析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.9.小明的家距离学校1600米,一天小明从家里出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上了他,已知爸爸的速度是小明速度的2倍,求小明的速度.【答案】解:设小明的速度为x米/分,则爸爸的速度是2x米/分,根据题意得:1600x =16002x+10,解得x=80,经检验,x=80是原方程的根.答:小明的速度是80米/分.【解析】设小明的速度为x米/分,则爸爸的速度是2x米/分,根据时间=路程÷速度结合爸爸比小明少用10分钟,即可得出关于x的分式方程,解之并检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.10.一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:240 x =1+240−x54x+2460,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时.【解析】根据题意结合行驶的时间的变化得出等式进而求出答案.此题主要考查了分式方程的应用,正确表示出汽车行驶的时间是解题关键.。
安县沙汀实验中学八年级下数学导学案之十六——分式方程的应用
知识点一:行程问题的应用题
例1:A、B两地相距40千米,甲从A地到B地,如果走的速度为x千米/时,那么需要走小时;如果速度加快2千米/时,那么需要走小时,这样可以比原来
少用小时,如果比原来少用1小时,那么列方程为
例2:、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
例3:从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?(解含字母系数的方程)
对应练习:
八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度。
课堂过关测试
1、甲、乙两人分别从距目的6千米和10千米的两地同时出发,甲、乙的速度比是3:4,
结果甲比乙提前20分钟到达目的地,求甲、乙的速度。
2、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1、5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度。
3、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
分式方程行程问题公式
分式方程是数学中一种含有分式的方程,行程问题是指涉及到时间、速度和距离的问题。
我们可以通过一个实例来演示分式方程在行程问题中的应用。
假设小明和小红同时从相同的起点出发,小明以每小时10公里的速度向东行驶,小红以每小时8公里的速度向西行驶。
我们需要求他们相遇所需的时间。
设小明和小红相遇所需的时间为t小时。
根据行程问题的描述,小明从起点出发后行驶的路程可以表示为:10t公里,而小红从起点出发后的行驶路程可以表示为:8t公里。
因为他们在相同时间相遇,根据分式方程的概念,我们可以设置以下等式:10t = 8t
接下来,我们可以解这个方程:
10t - 8t = 0 (将8t移到等号右边,得到10t - 8t = 0)
2t = 0 (化简方程,得到2t = 0)
t = 0 (将2t除以2,得到t = 0)
根据方程的解,我们可以得出结论:小明和小红相遇所需的时间为0小时,即他们从起点出发时已经相遇。
通过这个例子,我们展示了如何利用分式方程解决行程问题中的公式,我们设置了方程10t = 8t,并通过对方程进行化简和求解得出结果。
在实际问题中,我们可以根据给定的条件并使用类似的方法来解决行程问题。
分式方程——行程问题1、 某次列车平均提速v k m /h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?【变式1】八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度。
【变式2】赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式。
已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多95小时。
求自驾车速度和自行车速度各是多少?【变式3】某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20﹪,结果于下午4时到达,求原计划行军的速度。
【变式4】A、B两地相距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
【变式5】甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地。
求甲、乙的速度。
【变式6】某学校组织七、八年级的学生到离校15千米的植物园春游,两个年级的学生同时出发,八年级的学生的速度是七年级学生速度的1.2倍,结果八年级学生比七年级学生早到半小时,求七年级学生的速度。
【变式7】甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。
【变式8】某客车从甲地到乙地走全长480km的高速公路,从乙地到甲地走全长600km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该车由高速公路从甲地到乙地所需要的时间。