分式方程的应用之行程问题
- 格式:ppt
- 大小:703.50 KB
- 文档页数:16
行程问题1.新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?解:设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,由题意,得200 x −2001.2x=2060,解得x=100,经检验,x=100是原方程的解,且符合题意,则1.2x=120.kk答:大货车的速度为100km/ℎ,小轿车的速度为120km/ℎ.【解析】设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,根据时间关系列出方程,解方程即可.本题考查了分式方程分应用、分式方程的解法;根据时间关系列出方程是解决问题的关键.2.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/ℎ,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:700t −7001.4t=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据平均速度=路程÷时间结合A车的平均速度比B车的平均速度慢80km/ℎ,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.3.列方程解应用题八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】解:设骑车学生的速度为xkm/ℎ,由题意得,10x −102x=13,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/ℎ.【解析】设骑车学生的速度为xkm/ℎ,则汽车的速度为2xkm/ℎ,根据题意可得,乘坐汽车比骑自行车少用20min,据此列方程求解.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.4.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时,求高铁的平均速度是多少千米/时?【答案】解:设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:520 x −4002.5x=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.【解析】设普通列车平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据乘坐高铁比乘坐普通列车少用3小时,列出分式方程,然后求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.5.一辆汽车计划从A地出发开往相距180千米的B地,事发突然,加速为原速的1.5倍,结果比计划提前40分钟到达B地,求原计划平均每小时行驶多少千米?【答案】解:设原计划平均每小时行驶x千米,则加速后平均每小时行驶1.5x千米,根据题意得:180x −1801.5x=4060,解得:x=90,经检验,x=90是原分式方程的根,且符合题意.答:原计划平均每小时行驶90千米.【解析】设原计划平均每小时行驶x千米,则加速后平均每小时行驶1.5x千米,根据时间=路程÷速度结合结果比计划提前40分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6.正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【答案】解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:3250.4x −325x=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.【解析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.7.一艘轮船在静水中的最大航速为32km/ℎ,它以最大航速沿江顺流航行96km所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【答案】解:设江水的流速为Vkm/ℎ,根据题意可得:9632+V =6432−v,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/ℎ.【解析】设江水的流速为Vkm/ℎ,则顺水速=静水速+水流速,逆水速=静水速−水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:逆水速度=静水速度−水流速度,顺水路程=静水速度+水流速度.8.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/ℎ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.【答案】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:6002x +45=480x,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【解析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.9.小明的家距离学校1600米,一天小明从家里出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上了他,已知爸爸的速度是小明速度的2倍,求小明的速度.【答案】解:设小明的速度为x米/分,则爸爸的速度是2x米/分,根据题意得:1600x =16002x+10,解得x=80,经检验,x=80是原方程的根.答:小明的速度是80米/分.【解析】设小明的速度为x米/分,则爸爸的速度是2x米/分,根据时间=路程÷速度结合爸爸比小明少用10分钟,即可得出关于x的分式方程,解之并检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.10.一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:240 x =1+240−x54x+2460,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时.【解析】根据题意结合行驶的时间的变化得出等式进而求出答案.此题主要考查了分式方程的应用,正确表示出汽车行驶的时间是解题关键.。
安县沙汀实验中学八年级下数学导学案之十六——分式方程的应用
知识点一:行程问题的应用题
例1:A、B两地相距40千米,甲从A地到B地,如果走的速度为x千米/时,那么需要走小时;如果速度加快2千米/时,那么需要走小时,这样可以比原来
少用小时,如果比原来少用1小时,那么列方程为
例2:、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
例3:从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?(解含字母系数的方程)
对应练习:
八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度。
课堂过关测试
1、甲、乙两人分别从距目的6千米和10千米的两地同时出发,甲、乙的速度比是3:4,
结果甲比乙提前20分钟到达目的地,求甲、乙的速度。
2、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1、5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度。
3、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
分式方程的应用——行程工程问题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII方式方程的应用㈠一、要点精讲1、分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .2、常见问题的基本关系量⑴ 行程问题:时间路程速度= 速度路程时间= 时间速度路程⨯= ⑵ 工程问题:工作时间工作总量工作效率= 工作效率工作总量工作时间= 工作时间工作效率工作总量⨯=二、课前热身1、A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为V 1,从B 地返回A 地的速度为V 2,则A 、B 两地间往返一次的平均速度为( )A .221V V + B .21212V V V V + C .21212V V V V + D .无法计算 2、(08大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.3、一件工作甲单独做a 小时完成,乙单独做b 小时完成,甲、乙两人合作完成这件工作所需的小时数为A 、b a 11+;B 、ab 1;C b a +1;D 、ba ab + 4、某食堂有煤m 吨,原计划每天烧煤a 吨,现在每天节约煤b 吨,则可比计划多烧的天数是( )A 、b a m -;B 、b a m a m --;C 、b m ;D 、am b a m -- 5、一水池装有两个进水管,单独开甲管需a 小时注满空池,单独开乙管需b 小时注满空池,若同时打开两管,那么注满空池的时间是( )A .(b a 11+)小时B .ab 1 小时C .b a +1 小时D .ba ab +小时 三、典例精析考点一:行程问题1、(2010益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+2. (2011长春)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是(A )28002800304x x-=. (B )28002800304x x -=. (C )28002800305x x -=. (D )28002800305x x -=. 2.(2011铜仁)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km 设他家到学校的路程是xkm ,则据题意列出的方程是( ) A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .3、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的高速公路。
分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
8年 班 姓名: 学号: 命题人:匡丹丹 20140827 第 8 页分式方程的应用(一)------行程问题教学目标:1.根据路程、速度、时间的关系,列分式方程解决实际问题. 2.理解列分式方程解应用题的步骤,特别注意“验”这一步.3.情感态度价值观:培养学生分析问题、解决问题的能力,提高学生应用数学的意识. 教学重点:找出实际问题中的已知数量与未知数量,确定等量关系,列出分式方程. 教学难点:找出实际问题中的已知数量与未知数量,确定等量关系,列出分式方程. 关键:根据题意确定等量关系并准确列出方程. 教学流程:一、复习旧知:1.列方程解应用题的步骤是:审、设、列、解、验、答.2.行程问题涉及到的量有:路程、速度、时间.它们的关系是:路程= ;速度=时间=二、学习新知:例1.A 、B 两地相距40千米,甲从A 地到B 地,如果走的速度为x 千米/时,那么需要走小时;如果速度加快2千米/时,那么需要走 小时,这样可以比原来少用 小时,如果比原来少用1小时,那么列方程为 . 练习:小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( ) (A )60512601015-=+x x (B )60512601015+=-x x (C )60512601015-=-x x (D )5121015-=+xx例2.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半,求该长途汽车在原来国道上行驶的速度.练习1:轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.练习2:八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时达到.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.能力提高:甲、乙二人分别从相距36千米的A 、B 两地相向而行,甲从A 地出发1千米后,发现有物品遗忘在A 地,便立即返回,取了物品立即从A 地向B 地行进,这样甲、乙二人恰在AB 中点相遇.如果甲每小时比乙每小时多走0.5千米.求甲、乙二人的速度各是多少?。
15.2.分式方程的应用—行程问题一、教材分析:“可化为一元一次方程的分式方程应用题”既是解一元一次方程的延伸,又是后续学习复杂应用题的基础,也是学生感到畏难的学习内容之一。
究其原因:学生不懂得如何审题,理不清题目中复杂的数量关系,无法准确找到由未知到已知的钥匙------等量关系。
如何突破这一难点?我通常引导学生采用列表分析法。
二、学情分析:通过课前预习调查,发现学生存在的问题有:(1)思维不够清晰,无法正确列出方程;(2)单位不统一时不做变换(3)速度的单位未摆脱小学局限,没有能够转移到千米/小时、米/秒表示;(4)验根的二重性;(5)做题不够细心,答非所问或恰好相反。
因此,本节课要教会学生用找、设、列、解、验、答六步处理此类问题。
三、学习目标:1、知识与技能:分析题意找出等量关系,会列出分式方程解决实际问题;理解分式方程应用题验根的重要性及掌握分式方程应用题的步骤。
2、过程与方法:通过解决实际问题提高学生把实际问题转化为数学问题,把数学文字语言转化为符号语言的能力。
3、情感态度与价值观:加强学生应用数学知识于实际问题的兴趣和意识。
四、教学过程:(一)回顾旧知:1、在前面我们学过的应用题有哪些类型?2、解分式方程应用题的一般步骤是什么?3、行程类问题的数量关系:路程=速度×时间,速度=路程÷速度,时间=路程÷速度。
4、在水流行程问题中,已知静水速度和水流速度顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(二)自主探究行程问题(1)1、甲、乙二人要走15千米的路,甲的速度是乙的速度的1.2倍,甲比乙少用0.5小时。
甲、乙二人的速度各是多少?(学生读题、审题、设元、找相等关系、列方程)分析:设乙的速度是x千米/小时,则甲的速度是1.2x 千米/小时根据等量关系“甲比乙少用0.5小时”,则有甲的时间+0.5=乙的时间x2.115+0.5 =x 15 解:设乙的速度是x 千米/小时,则甲的速度是1.2x 千米/小时,根据题意,得:x 2.115+0.5=x 15 解得,x=5经检验,x=5是原分式方程的解并符合题意。
分式方程应用题之行程问题解题方法:1、速度×时间=路程2、画表格分析例1、小明每天骑自行车去15km的学校上学,最近一条新路开通,路程缩短为12km,路况也变得贼好,于是小明的平均速度比原来提高了20%,这样可以提前1小时到达学校。
试求小明原来骑自行车的速度为每小时多少km?31、甲、乙两火车站相距1280千米,“和谐”号列车提速后,它的行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度2、大车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比大车多行驶20千米,求两车的速度各是多少?3、小明的家距离学校2000米。
有一天,小明从家里去上学。
出发10分钟后,爸爸发现他没带数学书,立刻带上课本追赶小明,在距离学校400米的地方追上了小明。
已知爸爸的速度是小明速度的2倍,求小明的速度4、一个学生从学校回家,先步行2千米然后乘汽车行驶8千米到家,第二天骑自行车按原路返校,所用时间与回家时间相同,已知骑自行车的速度比步行速度快8千米/时,比汽车速度少12千米/时,求自行车速度例2、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆出租车也从A地出发,它的速度是公共汽车的3倍,已知出租车比公共汽车迟20分钟到达B地,求两车速度5、甲、乙两人都从A地出发到B地,已知两地相距50千米,且乙的速度是甲速度的2.5倍,现在甲先出发1小时30分,乙再出发,结果乙反而比甲早到1小时,问甲、乙两人速度各是多少?6、A、B两地相距135km,两辆汽车从A地开往B地,大汽车比小汽车早出发5h,小汽车比大汽车晚到30min,已知小汽车与大汽车的速度比是5:2,求两车速度7、A、B两地距离40km,甲乙二人同时从A地出发前往B地,甲的速度每小时比乙的速度快2km。
当甲来到距B地4km时,因交通阻塞减慢速度,速度每小时减少8km,如果两人同时到达,求甲乙两人原来的速度。
解分式方程应用题的步骤分式方程应用题及解析。
一、行程问题。
1. 题目。
- 一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?- 解析。
- 设江水的流速为x千米/时。
- 顺流速度 = 轮船在静水中的速度+水流速度,即(30 + x)千米/时;逆流速度=轮船在静水中的速度 - 水流速度,即(30 - x)千米/时。
- 根据时间 = 路程÷速度,顺流航行100千米所用时间为(100)/(30 + x)小时,逆流航行60千米所用时间为(60)/(30 - x)小时。
- 因为顺流航行100千米所用时间与逆流航行60千米所用时间相等,所以可列方程(100)/(30+x)=(60)/(30 - x)。
- 交叉相乘得:100(30 - x)=60(30 + x)。
- 展开括号:3000-100x = 1800+60x。
- 移项:-100x-60x=1800 - 3000。
- 合并同类项:-160x=-1200。
- 解得:x = 7.5。
- 经检验,当x = 7.5时,(30 + x)(30 - x)=(30+7.5)(30 - 7.5)=37.5×22.5≠0,所以x = 7.5是原分式方程的解。
2. 题目。
- 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。
- 解析。
- 设步行速度为x千米/时,则骑自行车速度为4x千米/时。
- 步行7千米所用时间为(7)/(x)小时,骑自行车(19 - 7)=12千米所用时间为(12)/(4x)小时。
- 根据共用了2小时到达乙地,可列方程(7)/(x)+(12)/(4x)=2。
- 方程可化为(7)/(x)+(3)/(x)=2。
- 合并同类项得(10)/(x)=2。
分式方程:行程问题题型一、利用路程、速度、时间关系列方程1、核酸检测时采集的样本必须在4小时内送达检测中心,超过时间,样本就会失效,A、B两个采样点到检测中心的路程分别为30km、36km,A、B两个采样点的送检车有如下信息:信息一:B采样点送检车的平均速度是A采样点送检车的1.2倍:信息二:A、B两个采样点送检车行驶的时间之和为2小时.设A采样点送检车的平均速度是Xkm∕h,若B采样点从开始采集样本到送检车出发用了2.6小时,请问B采样点采集的样本会不会失效?2、21印度尼西亚雅万高铁起自首都雅加达,终至旅游名城万隆,全长约线144公里,比雅加达至万隆的普通铁路短36公里,全线采用中国技术、中国标准,是“一带一路”建设的标志性项目.已知高铁平均速度是普通列车平均速度的4倍,高铁比普通列车快2小时15分钟.⑴那么高铁与普通列车的平均速度分别为多少?3.为了充分保护乘客的安全,从2011年8月16日起,部分高铁实行了不同程度降速.京沪高铁全长1400千米,平均速度降50千米每小时,行驶的时间比原来增加了40分钟,求京沪高铁降速后的速度4、甲、乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高为原来的1.2倍,结果准时到达乙站,求这列货车原来的速度.5、交通是经济的脉络和文明的纽带,截至2020年底,我国高速铁路运营里程五年间翻了近一番,稳居世界第一,居民出行更加便捷,据悉,甲乙两城市相距800千米,乘坐高铁列车比乘坐普通列车的运行时间缩短了4小时,已知高铁列车的平均速度是普通列车平均速度的2.5倍,求高铁列车的平均速度6、某年4月中旬后,广深铁路高速列车提速25%,提速后乘客从广州坐火车到深圳将缩短15min.广州、深圳两市距离150km.求提速前的列车速度7、A1B两地之间的距离为18Okm,一辆汽车从A地去往B地,出发1小时后,汽车出现故障,停车修理时间为40分钟,若想要按照原计划时间到达B地,汽车速度需提高到原来的1.5倍,求汽车原来的速度是多少?8、甲乙两地间的一条公路全长为150千米,一辆公共汽车沿着这条公路从甲地出发驶往乙地,2小时后,一辆小汽车也沿着这条公路从甲地出发驶往乙地,但中途因故停车半小时,结果小汽车与公共汽车同时到达乙地,已知小汽车的速度是公共汽车的3倍,求两车的速度,9、在全民健身运动中,“万步有约”健步走活动备受市民青睐,元旦节当天,小李和妈妈约定从通泰门出发,沿相同的路线去4公里外的元帅广场,已知妈妈的步行速度是小李的1.6倍.⑴若小李先出发30分钟,妈妈才从通泰门出发,最终小李和妈妈同时到达元帅广场,则小李步行的速度是每分钟多少米?⑵粗心的妈妈到达元帅广场后,想起30分钟后公司有一个重要会议要参加,公司距离元帅广场3.8公里,妈妈马上从元帅广场出发赶去公司,她先以原速度步行一段时间后,又以150米/分钟的速度跑步前行,若妈妈想要不迟到,则至少需要跑步多少分钟?10、小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同第一天步行去上班结果迟到了5分钟,第二天骑自行车去上班结果早到10分钟已知骑自行车的速度是步行速度的1.5倍.⑴求小李步行的速度和骑自行车的速度:⑵有一天小李骑自行车出发,出发1.5千米后自行车发生故障,小李立即跑步去上班(耽误时间忽略不计)为了至少提前3分钟到达则跑步的速度至少为多少千米每小时?11、小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时.(1)小东走线路一的平均速度是多少km/h;(2)当小东从线路一出发半小时后,邻居小北沿着路线二去同一旅游地旅行,小北至少以多少km/h的平均速度才能赶在小东前到达目的地(与小东一起到达最好).12、用电脑程序控制小型赛车进行50米比赛,“畅想号”和"和谐号”两辆赛车进入了决赛.比赛前的练习中,“畅想号”从起点出发8秒后,“和谐号”才从起点出发结果“和谐号”迟到2秒到达终点.已知“和谐号"是“畅想号”的平均速度的2.5倍“畅想号”的平均速度是多少?13、李丰跟随爸爸开车前往距离出发点240km的韶关老家,出发1小时内按原计划匀速行驶,之后速度提高至原来速度的1.5倍,最后比原计划提前60分钟到达韶关老家,求李丰爸爸开车出发1小时后的行驶速度14、列方程解应用题:甲、乙两地相距19千米某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍求步行的速度和骑自行车的速度.15、甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园.已知甲同学的速度是乙同学速度的2倍,甲同学在路上因事耽搁了30分钟结果两人同时到达公园.问:甲、乙两位同学平均每小时各骑行多少千米?16、已知A、B两地相距240千米,甲从A地去B地,乙从B地去A地,甲比乙早出发3小时,两人同时到达目的地,已知乙的速度是甲的速度的2倍⑴甲每小时走多少千米?⑵求甲乙相遇时乙走的路程17、小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同,第一天步行去上班结果迟到了5分钟第二天骑自行车去上班结果早到10分钟已知骑自行车的速度是步行速度的1.5倍∙(1)求小李步行的速度和骑自行车的速度:(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障,小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达。
15.3(3)分式方程--应用-行程问题一.【知识要点】1.按照题目的要求把所要求的量用适当的式子表示出来。
二.【经典例题】1.某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,根据题意可列方程为 ______________ .2.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.3.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时三.【题库】【A】1.A,B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度。
2.(本题满分8分)2017年12月6日,西成高速铁路正式开通运营.从成都到西安,可乘坐普通列车或高速列车,已知高速列车与普通列车的行驶路程分别为630千米和840千米,若高速列车与普通列车的平均速度均速度比是21:5,且乘坐高速列车比乘坐普通列车的时间缩短了13小时48分钟,求西成高速列车的平均速度.【B】1.甲、乙两座城市的中心火车站A,B两站相距360km。
一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站。
求动车和特快列车的平均速度各是多少。
2.列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.3.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇,若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的()。