Bezier曲线
- 格式:pptx
- 大小:791.25 KB
- 文档页数:26
Bezier 曲线什么是 Bezier 曲线?Bezier 曲线是一种数学曲线,由法国工程师 Pierre Bézier 于20世纪50年代发明。
它是计算机图形学中最基本和最常用的曲线之一。
由于其简单性和灵活性,Bezier 曲线被广泛应用于计算机图形、工业设计、动画制作等领域。
Bezier 曲线的特点Bezier 曲线由一系列控制点确定,并通过调整这些控制点的位置和参数来定义曲线的形状。
以下是 Bezier 曲线的一些特点:1.可调节性:调整控制点的位置和参数可以改变曲线的形状、弯曲程度和速度。
2.平滑性:Bezier 曲线能够平滑连接控制点,使得曲线在控制点之间呈连续曲率。
3.参数化形状:Bezier 曲线可以通过调整参数来生成无限多种形状,从简单的直线到复杂的曲线。
4.逼近性:Bezier 曲线可以用来逼近其他复杂的曲线,如圆弧、椭圆等。
Bezier 曲线的数学表达Bezier 曲线是通过插值和多项式生成的数学曲线。
根据控制点的个数,可以确定 Bezier 曲线的阶数。
一般情况下,Bezier 曲线的阶数等于控制点数减1。
对于一维的 Bezier 曲线,它可由以下公式表示:Bezier 1DBezier 1D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
对于二维的 Bezier 曲线,它可由以下公式表示:Bezier 2DBezier 2D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
Bezier 曲线的应用Bezier 曲线的应用非常广泛,以下是一些常见的应用场景:1.计算机图形学:Bezier 曲线可以用来绘制平滑的曲线和曲面,用于构建2D和3D图形。
2.工业设计:Bezier 曲线可以用来设计平滑的汽车车身、家具等产品。
3.动画制作:Bezier 曲线可以用来定义动画路径,使得动画流畅而自然。
2.2.3 Bezier曲线在工程设计中,由给定型值点进行曲线设计往往由于型值点的误差而得不到满意的结果。
另一方面,在一些更注重外观的设计中,型值点的精度又不很重要。
从1962年起,法国雷诺汽车公司的Bezier开始构造他的以“逼近”为基础的参数曲线表示法。
以这种方法为基础,完成了一种自由型曲线和曲面的设计系统UNIS-URF,1972年在雷诺汽车公司正式使用。
Bezier曲线的形状是通过一组多边折线(称为特征多边形)的各顶点唯一地定义出来的。
在多边形的各顶点中,只有第一点和最后一点在曲线上,其余的顶点则使用控制曲线的导数、阶次和形式。
第一条和最后一条折线则表示出曲线在起点和终点处的切线方向。
曲线的形状趋向仿效多边折线的形状。
改变控制点与改变曲线形状有着形象生动的直接联系。
如图2.6所示。
1)Bezier曲线的定义给定 n+ l个空间向量bi(i= 0,l,…,n),称 n次参数曲线段为Bezier曲线。
式中使用了Bernstein多项式Bi,n(u)作为基函数:u是局部参数,u∈[0,1]。
我们给出n=3的Bezier曲线的矩阵表示:则有 P(u)=UMB2)Bezier曲线的性质Bezier曲线的基本数学表达式:这说明Bezier曲线在始点和终点处的切线方向是与Bezier控制多边形的第一边及最后一边的走向一致。
这说明曲线在起点和终点处的二阶导数仅与相邻的二点位置有关,而与其余各点的位置关。
Bezier曲线的这一特性说明,只需适当移动控制点就能获得满意的曲线位置和形状。
利用这个特性,当采用分段Bezier 曲线时,只要保证曲线在接点处的折线共线,就可以得到C1连续性。
如图2.7所示的一个公共端点的二条Bezier曲线,当两段曲线的控制折线在接点处共线时,就保证了它们连成的曲线在公共端点的一阶连续。
Bezier曲线还具有凸包性,即B6zier曲线均落在由它的控制点形成的凸壳内。
所谓凸壳是指用橡皮图从外面去套所有控制点所形成的凸多边形。
Bezier曲线、B样条曲线和NURBS曲线0.概述1. 贝塞尔曲线(Bezier Curve):贝塞尔曲线由一组控制点和控制点上的权重组成。
贝塞尔曲线的阶数由控制点的数量决定,阶数为n的贝塞尔曲线需要n+1个控制点。
贝塞尔曲线具有局部控制的特性,即曲线上的一段由相邻的几个控制点决定,不受其他控制点的影响。
贝塞尔曲线的计算相对简单,但在变形过程中可能会出现形状扭曲的问题。
2. B样条(B-Spline): B样条曲线是一种基于分段多项式的曲线表示方法。
与贝塞尔曲线不同,B样条曲线的每个控制点都有一个关联的基函数。
这些基函数决定了曲线上每一点的形状。
B样条曲线的阶数可以是任意的,较高阶的B样条曲线能够更灵活地描述复杂的曲线形状。
B样条曲线具有良好的局部控制性和平滑性,可以很好地避免贝塞尔曲线的形状扭曲问题。
3. NURBS曲线(Non-Uniform Rational B-Spline Curve):NURBS曲线是对B样条曲线的扩展,它引入了有理权重的概念。
NURBS曲线的每个控制点都有一个关联的权重,这些权重可以调节曲线上各个点的影响程度。
NURBS曲线能够表示更复杂的曲线形状,如圆弧和椭圆等。
总的来说Bezier曲线中的每个控制点都会影响整个曲线的形状,而B样条中的控制点只会影响整个曲线的一部分,显然B样条提供了更多的灵活性;Bezier和B样条都是多项式参数曲线,不能表示一些基本的曲线,比如圆,所以引入了NURBS,即非均匀有理B样条来解决这个问题;贝塞尔曲线适用于简单的曲线形状设计,B样条曲线具有更好的局部控制和平滑性,适用于复杂曲线的建模而NURBS曲线在B样条的基础上引入了有理权重,可以更准确地描述各种曲线形状Bezier曲线是B样条的一个特例,而B样条又是NURBS的一个特例1.Bezier曲线1.1 贝塞尔曲线的历史:贝塞尔曲线于 1962 年,由法国工程师皮埃尔·贝济埃(PierreBézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计,贝塞尔曲线最初由保尔·德·卡斯特里奥于1959年运用德卡斯特里奥算法开发,以稳定数值的方法求出贝塞尔曲线。
AE中贝塞尔曲线在Adobe After Effects(AE)中,贝塞尔曲线是一个非常重要的概念,它用于创建和编辑动画和运动路径。
在这篇文章中,我们将来详细介绍AE中的贝塞尔曲线。
一、贝塞尔曲线的基本概念贝塞尔曲线是一种数学曲线,由法国数学家Pierre Bézier创建。
它被广泛应用于计算机图形学、计算机动画和计算机视觉等领域。
在AE中,贝塞尔曲线用于定义物体的运动路径、形状和动画。
二、贝塞尔曲线的构成贝塞尔曲线由一系列点组成,这些点被称为控制点。
每个控制点都有两个“把手”,一个在控制点的左边,一个在右边。
通过调整控制点的位置和把手的角度和长度,可以改变贝塞尔曲线的形状。
三、贝塞尔曲线的类型在AE中,有两种类型的贝塞尔曲线:Bezier曲线和B-spline曲线。
1. Bezier曲线:Bezier曲线是最常用的贝塞尔曲线类型。
它由两个端点和两个控制点组成。
这两个控制点定义了曲线的形状,而两个端点则确定了曲线的起点和终点。
在AE中,Bezier曲线通常用于创建动画和运动路径。
2. B-spline曲线:B-spline曲线是一种更复杂的贝塞尔曲线类型。
它由多个控制点组成,这些控制点可以沿着曲线移动,从而改变曲线的形状。
B-spline曲线在处理复杂形状和动画时非常有用。
四、如何创建和编辑贝塞尔曲线1. 创建贝塞尔曲线:在AE中,可以通过以下步骤创建贝塞尔曲线:a. 选择一个图层或物体,然后按下“Ctrl”键并单击时间轴中的空白区域。
这将创建一个新的空对象。
b. 在时间轴中选择空对象,然后按下“Ctrl”键并单击时间轴中的空白区域。
这将创建一个新的贝塞尔曲线。
c. 在时间轴中选择贝塞尔曲线,然后使用“Ctrl”键拖动控制点以调整曲线的形状。
2. 编辑贝塞尔曲线:在AE中,可以使用以下方法编辑贝塞尔曲线:a. 拖动控制点:选择控制点并拖动它们可以改变曲线的形状。
当鼠标放在控制点的把手上时,会出现一个红色线条,表示可以调整把手的角度和长度。
四、B样条曲线与曲面Bezier曲线具有很多优越性,但有二点不足:1)特征多边形顶点数决定了它的阶次数,当n较大时,不仅计算量增大,稳定性降低,且控制顶点对曲线的形状控制减弱;2)不具有局部性,即修改一控制点对曲线产生全局性影响。
1972年Gordon等用B样条基代替Bernstein基函数,从而改进上述缺点。
B样条曲线的数学表达式为:在上式中,0 ≤ u ≤ 1;i= 0, 1, 2, …, m所以可以看出:B样条曲线是分段定义的。
如果给定 m+n+1 个顶点 Pi ( i=0, 1, 2,…, m+n),则可定义m+1 段 n 次的参数曲线。
在以上表达式中:Nk,n(u) 为 n 次B样条基函数,也称B样条分段混合函数。
其表达式为:式中:0 ≤ u ≤1k = 0, 1, 2, …, n1.均匀B样条曲线1 一次均匀B样条曲线的矩阵表示空间n+1个顶点(i = 0,1,…,n)定义n段一次(k=0,1,n=1)均匀B样条曲线,即每相邻两个点可构造一曲线段Pi(u),其定义表达为:=(1-u)Pi-1 + u Pi= N0,1(u)Pi-1 + N1,1(u)Pi第i段曲线端点位置矢量:,且一次均匀B样条曲线就是控制多边形。
2 二次均匀B样条曲线的空间n+1个顶点的位置矢量(i=0,1,…,n)定义n-1段二次(k=0,1,2, n=2)均匀B样条曲线,每相邻三个点可构造一曲线段Pi(u)(i=1,…,n-1),其定义表达为:=(1 - 2 u + u 2)Pi-1 +(1 + 2 u - 2u2)Pi +u 2 Pi+1= N0,2(u)Pi-1 + N1,2(u)Pi + N2,2(u)Pi+1端点位置矢量:,,即曲线的起点和终点分别位于控制多边形Pi-1Pi和PiPi+1的中点。
若、、三个顶点位于同一条直线上,蜕化成直线边上的一段直线。
端点一阶导数矢量:,,,,即曲线的起点切矢和终点切矢分别和二边重合,且相邻两曲线段在节点处具有一阶导数连续。
bezier曲线表达式
贝塞尔曲线(Bezier Curve)是一种常用的数学曲线,用于计算机图形学和动画制作等领域。
贝塞尔曲线可以使用参数形式表示,也可以使用矢量表示。
贝塞尔曲线的矢量表示形式是:P(t) = ∑_{i=0}^{n} B_{i,n}(t) * P_i其中,P(t)表示曲线上的点,B_{i,n}(t)是贝塞尔基函数,P_i 是控制点。
n表示控制点的个数,t是一个参数,取值范围是[0,1]。
对于2次贝塞尔曲线,其基函数为:B_{0,2}(t) = 1-t^2, B_{1,2}(t) = 2t*(1-t), B_{2,2}(t) = t^2在参数t=0时,曲线起点为P_0;在参数t=1时,曲线终点为P_2。
对于3次贝塞尔曲线,其基函数为:B_{0,3}(t) = 1-t^3, B_{1,3}(t) = 3t*(1-t)^2, B_{2,3}(t) = 3t^2*(1-t), B_{3,3}(t) = t^3在参数t=0时,曲线起点为P_0;在参数t=1时,曲线终点为P_3。
对于更高次的贝塞尔曲线,其基函数可以递推得到。
此外,贝塞尔曲线的参数形式表示为:C(t) = ∑_{i=0}^{n} C_i * t^i其中,C_i是控制点,t是一个参数,取值范围是[0,1]。
该公式可用于绘制贝塞尔曲线。
简述bezier曲线的性质一、 bezier曲线的定义1. bezier曲线的概念: bezier曲线就是函数y=f(x), y=f(-x),f(x)随x的变化而变化,并且所有这些随机点的集合都包含在一条直线上。
2. bezier曲线的图象: bezier曲线可以由点M(x, y)表示,由点M'(x', y')表示,由点O(x, y)表示,因为这四个点都属于[-x,0],这样,它们围成了一个四边形,我们称这个四边形为[-x, 0]A ∪[0, y]B ∩[0, -y]的bezier曲线图象。
3. bezier曲线的性质:①当x→0时, bezier曲线是开口向上的抛物线,②当x→0时, bezier曲线是以y轴为中心对称的双曲线,③当x→0时, bezier曲线是倾斜的;若y=f(x), f(-x), f(x)是直线,这是一条平行线;4. bezier曲线的拐点:曲线上某一点到x轴、 y轴的距离相等,或该点既不在x轴上,也不在y轴上,则称这一点是bezier曲线的拐点。
拐点有三类:一类是x=0, y=0;第二类是x=y=0;第三类是x=0, y=y=0。
4. bezier曲线的应用:在线性规划问题中,需要确定使得目标函数值达到最大的水平或垂直线段, bezier曲线可以帮助我们做出正确选择, bezier曲线也可以帮助我们分析解决一些实际问题,如果求极值的问题,求两条或多条实际可行线段交点的问题,通过使实际可行线段交点最小来分析问题和找到最佳点。
总之, bezier曲线是我们解决实际问题的有力工具。
5.综合练习,解答1.利用bezier曲线,讨论函数在某一点的取值范围,再由此判断函数的单调区间; 2.求已知函数f(x)的图象与其一阶导数f'(x)的图象的交点坐标; 3.利用bezier曲线及其图象求下列各函数的一阶导数; 4.已知一元二次方程x=1/2-1/3,用bezier曲线法求解; 5.讨论函数f(x)=-x-7/x是否为增函数,并说明理由。
贝塞尔曲线的理解Bezier曲线的由来1962年,法国⼯程师贝塞尔发表,他运⽤贝塞尔曲线来为汽车的主体进⾏设计Bezier曲线的作⽤Bezier曲线是⽤⼀系列点控制曲线状态的。
主要分为数据点:确定曲线的起始和结束位置控制点:确定曲线的弯曲程度举例理解:想在AC(起始点和结束点)之间画⼀个曲线,⽤B点(控制点)控制这个曲线的弯曲程度但是控制点是可以多个的,⽐如两个控制点。
以此类推,可以有很多个。
起点和终点都只有⼀个,但是控制点可以多个,甚⾄是0,0的时候就是直线啦!Bezier曲线的原理为什么⼏个点就可以得到⼀个曲线?先说⼀个控制点的情况,如图所⽰:1. A/B/C三点是确定的2. 在AB上任取⼀点D,得到ratio = AD/AB3. 再由BE/BC = ratio 得到E点4. 连接DE,同理DF/DE = ratio得到F5. ⽽F点就是曲线上的⼀点,当然凭着这⼀点是⽆法得到整条曲线的6. 于是,再来⼀遍,重新取D点得到新的F点,以此类推,如图那么两个控制点呢?道理是⼀样的,在AB上任取⼀点E,得到曲线上的J点。
AE/AB = BF/BC = CG/CD = EH/EF = FI/FG = HJ/HI最后来个炫酷的四个控制点:理解Bezier曲线的公式⼀次贝塞尔曲线⼀次贝塞尔曲线(也是线性贝塞尔曲线)公式:B(t) = (1 - t) * P0 + tP1t表⽰在 P0P1/P0P1之间任取⼀点P2,t = P0P2/P0P1,也就是⽐例,公式⾥的P0和P1同步表⽰其x轴坐标或者y轴坐标。
已知P0的坐标是(a,b),P1的坐标是(c,d),那么假设P2的坐标是(x,y)(1-t)/(c-x) = t/(x-a) => x = (1-t)a + tc同理 y = (1-t)d + tb于是简写成 B(t) = (1 - t) * P0 + tP1⼆次贝塞尔曲线⼆次贝塞尔曲线(也是线性贝塞尔曲线)公式:t同上在P0P1上的点是A,在P1P2上的点是B,在AB上的点是C,C也就是曲线上的⼀点。