无限深方阱之争
- 格式:ppt
- 大小:1.98 MB
- 文档页数:13
论文题目:一维无限深势阱简述制作人:刘子毅(应用物理(1))学号:09510113一维无限深势阱一、引言Hu = Eu,,2222Eu Vu dxu d m =+- (1) 在图中Ⅰ区,-a/2<x<a/2,式中的V=0;在图中Ⅱ区,x<-a/2和x>a/2, V=∞. 现在解Ⅰ区情况的方程,V=0,(1)式成为.2,22222mEk u k u mE dx u d =-=-= 设axe u =,那么u a u n2=,代入上式,u k u a 22-= ik a ±=所以ikx ikx Be Ae u -++=kx D kx C u sin cos += (2)(2)式是Ⅰ区的通解。
2、一维无限深阱电子的基态222222282n mdh n md E n == π n=1、2、3…… 无量纲处理:以波尔半径2200m e a ε=里德伯20242ε me R y =分别为长度和能量单位能量可化为21d E π3、数值模拟当n=1时,1E 和d 的一组数值用计算机编程模拟如下: 设d 从0.3 3.0 include ‹stdio.h › include ‹math.h ›main() { double e,d,c; int i; c=3.14,d=0.3; for(i=0;i ‹10;i++) { e=c/(d*d); printf(“%lf ”,&e); d=d+0.3;} }d 的取值利用画图软件描绘出横坐标为d ,纵坐标为E 的曲线 设d 从0.3 3.0,能量化简为:21dE π=模拟如下:。
一维无限深方势阱的能量班级:姓名:学号:一维无限深方势阱的能量一、 引言:222220202()d E x d m dx d U x E x d ψ⎧-ψ=ψ<<⎪⎪⎨⎪-ψ+=ψ≥⎪ (1) (2)9/10m-020406080100120140160文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。
" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。
"《资治通鉴·晋孝武帝太元十四年》:"诸曹皆得良吏以掌文按。
"《花月痕》第五一回:" 荷生觉得自己是替他掌文案。
"旧时衙门里草拟文牍、掌管档案的幕僚,其地位比一般属吏高。
《老残游记》第四回:"像你老这样抚台央出文案老爷来请进去谈谈,这面子有多大!"夏衍《秋瑾传》序幕:"将这阮财富带回衙门去,要文案给他补一份状子。
"文案音译文案英文:copywriter、copy、copywriting文案拼音:wén àn现代文案的概念:文案来源于广告行业,是"广告文案"的简称,由copy writer翻译而来。
一维无限深势阱薛定谔方程求解一维无限深势阱是量子力学中最经典的问题之一,其求解对于理解基本的量子力学原理以及波函数的性质具有重要的意义。
薛定谔方程是描述量子力学体系中粒子的行为的基本方程,通过求解薛定谔方程,我们可以获得系统的波函数及其相应的能级。
让我们来考虑一个无限深势阱,这个系统可以简单地用一个势能函数来描述。
在这个系统中,粒子只能在一个有限的空间区域内运动,而且势能在这个区域内是常数为零的。
首先,我们需要写出薛定谔方程。
对于一维情况,薛定谔方程可以写成:-ħ²/2m * d²ψ(x)/dx²+ V(x)ψ(x) = Eψ(x)。
其中,ψ(x)是系统的波函数,V(x)是势能函数,E是波函数对应的能量。
对于无限深势阱,势能函数在阱内为零,在阱外为无穷大。
因此,V(x)在阱外的值可以视为一个很大的正数。
接下来,我们需要考虑边界条件。
在无限深势阱中,粒子是被约束在一个有限空间内的。
因此,在边界处,粒子的波函数必须为零。
对于一个无限深势阱,边界条件可以写为ψ(0)=ψ(a)=0,其中,a是阱的宽度。
现在,让我们尝试求解薛定谔方程。
由于系统的势能在阱内为零,薛定谔方程可以简化为:-d²ψ(x)/dx² = k²ψ(x),其中,k=√(2mE/ħ²)。
这是一个常微分方程,我们可以通过分离变量和积分来求解。
假设ψ(x)可以分解为两个函数的乘积:ψ(x) = X(x)Y(y)。
将这个假设代入方程中,并整理得:1/X(x) * d²X(x)/dx² = -1/Y(y) * dY(y)/dy = -k²。
我们可以分别对X(x)和Y(y)进行求解,然后将两个解再组合起来得到系统的波函数。
针对常微分方程1/X(x) * d²X(x)/dx² = -k²,我们可以得到其解为X(x) = Asin(kx) + Bcos(kx),其中,A和B是常数。
一维无限深方势阱中粒子动量概率分布引出的问题在量子力学中,无限深方势阱问题是一个简化理想化的问题。
无限正方形势阱是有限大小的正方形势阱。
井内电势为0,井外电势无穷大。
在阱中,粒子可以不受任何力地自由移动。
但是阱壁无限高,粒子完全被约束在阱里。
通过 schr\ddot{o}dinger 方程的解答,明确地呈现出某些量子行为,这些量子行为与实验的结果相符合,然而,与经典力学的理论预测有很大的冲突。
特别令人注目的是,这些量子行为是自然地从边界条件产生的,而非人为勉强添加产生的。
这解答干净利落地展示出,任何类似波的物理系统,自然地会产生量子行为;无限深方势阱问题的粒子的量子行为包括:1.能量的量子化:粒子量子态的本征函数,伴随的能量不是任意的,而只是离散能级谱中的一个能级。
2.基态能量:一个粒子允许的最小能级,称为基态能量,不为零。
3.节点:与经典力学相反,薛定谔方程预言了节点的存在。
这意味着在陷阱的某个地方,发现粒子的概率为零。
这个问题再简单,也能因为能完整分析其薛定谔方程,而导致对量子力学更深入的理解。
其实这个问题也很重要。
无限深正方形势阱问题可以用来模拟许多真实的物理系统,例如直的极细纳米线中导电电子的量子行为。
为了简化问题,本文从一维问题出发,讨论了粒子只在一维空间中运动的问题。
一个粒子束缚于一维无限深方势阱内,阱宽为 l 。
势阱内位势为0,势阱外位势为无限大。
粒子只能移动于束缚的方向( x 方向)。
一维无限深方势阱的本征函数 \psi_{n} 于本征值 e_{n} 分别为\psi_{n}=\sqrt{\frac{2}{l}}sin(\frac{n\pi x}{l})e_{n}=\frac{n^2 h^2}{8ml^2}其中, n 是正值的整数, h 是普朗克常数, m 是粒子质量。
一维不含时薛定谔方程可以表达为-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+v(x)\psi(x)= e\psi(x)其中, \psi(x) 是复值的、不含时的波函数, v(x) 是跟位置有关的位势, e 是正值的能量。
一维无限深势阱无限深阱假设粒子不能离开势阱,也就是有一个势为无穷大的壁。
势可以写成()⎪⎪⎩⎪⎪⎨⎧>≤≤-∞=2022a x a x a x V(注:也可以选用坐标形如第二个图,这样的解简单,且容易推广到三维,但是对称性不如第一个图明显。
)注意,这个势是有奇异性的,我们分别有势阱内和势阱外的方程:⎪⎪⎩⎪⎪⎨⎧>=≤=+外)(阱外,粒子不能到阱(阱内)2020222a x a x E m dx d ψψψ 考虑势阱内,定义: 22mE k ≡ 定态方程为:0222=+ψψk dxd 此方程的通解为:kx B kx A cos sin +=ψ或:()δψ+=kx A sin连续性条件:02=±=ax ψ(单值、有限自动满足) 于是:⎪⎪⎩⎪⎪⎨⎧-+-+)2(cos )2(sin )2(cos )2(sin a k B a k A a k B a k A (注意:由于势在边界上有奇异性(无限深 ), ψ不连续,有跃变。
)这是关于 A 、B 的齐次方程,有非零解的条件是系数行列式为零,即:02cos 2sin 2cos 2sin =-a k a k a kak因此, 02cos 2sin 2=a k a k 即:0sin =ka故:() 3,2,1==n n ka π(注意:n 不能取 0 ,否则就出现了不振动的“波”。
)an k k n π== 22222ma n E n π= n maE 222π ≈∆ 可见势阱中能级是分立的,(与用德布罗意驻波直接计算一样)。
需要注意的是,n ma E 222π ≈∆,即能级越高越稀疏,但大量子数情况下02~→∆nE E n n ,即n n E E <<∆,所以在经典情况下(大量子数)感受不到能级的间隔,便认为能量是连续的,与对应原理相符。
下面求波函数,我们有:n 为奇数(偶宇称):002sin =⇒=A a k A n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202cos a x a x x k B n n ψ n 为偶数(奇宇称):002cos =⇒=B a k B n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202sin a x a x x k A n n ψ其实上述结果可以直接看出来,因为态应该取确定的宇称,因此只能是sin 或者cos ,不可能是它们的组合。
一维无限深方势阱中势阱中粒子的能级公式推导一维无限深方势阱是量子力学教学中常见的模型之一。
在这个模型中,粒子被限制在一个长度为L的势阱中运动,势阱的势能在阱内为零,而在阱外则无限大。
研究一维无限深方势阱中粒子的能级公式推导,可以帮助我们更深入地理解量子力学中的基本概念和数学工具。
下面我将按照深度和广度的要求,从简单的物理概念和数学原理开始,逐步推导一维无限深方势阱中粒子的能级公式,并带有个人的观点和理解。
一、基本概念和数学工具1.1 势阱势阱是一种常见的量子力学模型,它可以用来描述粒子在受限空间中的运动。
在一维无限深方势阱中,势能在阱内为零,而在阱外为无限大,这意味着粒子在阱内具有确定的能量,而在阱外无法存在。
1.2 薛定谔方程薛定谔方程是描述量子力学中粒子运动的基本方程。
对于一维无限深方势阱而言,薛定谔方程可以简化为一维定态薛定谔方程:\[ -\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x) \]其中,ψ(x)是粒子的波函数,m是粒子的质量,E是粒子的能量,ħ是普朗克常数。
二、能级公式的推导2.1 边界条件在一维无限深方势阱中,粒子受到势阱两侧的限制,因此波函数在势阱边界处为零。
这意味着在x=0和x=L处,波函数满足边界条件:\[ \psi(0) = 0 \]\[ \psi(L) = 0 \]2.2 波函数的解根据边界条件,我们可以求解一维定态薛定谔方程得到波函数的解。
波函数的解具有以下形式:\[ \psi_n(x) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L}) \]其中,n为能级量子数。
2.3 能级公式将波函数的解代入一维定态薛定谔方程中,可以得到粒子的能级公式:\[ E_n = \frac{n^2\pi^2\hbar^2}{2mL^2} \]其中,En为粒子的能量,n为能级量子数。
三、个人观点和理解在推导一维无限深方势阱中粒子的能级公式过程中,我们利用了量子力学基本的数学工具和物理概念,如薛定谔方程、波函数和边界条件。
55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。