Borrhqw高一数学典型例题分析:等差数列的前n项和
- 格式:doc
- 大小:136.00 KB
- 文档页数:11
等差数列的前n 项和·例题解析【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a 6=a 1+5d ,也可以不必求出a n 而直接去求,所列方程组化简后可得++相减即得+,a 2a 9d =28a 4d =25a 5d =36111⎧⎨⎩ 即a 6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】 在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解 由已知,第一个数列的通项为a n =3n -1;第二个数列的通项为b N =5N -3若a m =b N ,则有3n -1=5N -3即=+ n N 213()N - 若满足n 为正整数,必须有N =3k +1(k 为非负整数).又2≤5N -3≤197,即1≤N ≤40,所以N =1,4,7,…,40 n=1,6,11,…,66∴ 两数列相同项的和为2+17+32+…+197=1393【例3】 选择题:实数a ,b ,5a ,7,3b ,…,c 组成等差数列,且a +b +5a +7+3b +…+c =2500,则a ,b ,c 的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d ①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212 由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1 ⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n () 12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++ 解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S=(a+a)n2n1n·×=-=-+=--+()()633232632 322123218222n nn n n∵n∈N,∴当n=10或n=11时,S n取最大值165.【例11】求证:前n项和为4n2+3n的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n-1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证⇒由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件.说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再 解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d =1725d d =29817162∴a n =25+(n -1)(-2)=-2n +27∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系.由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
高一数学等差数列等差数列的前n 项和重难点解析人教版数学等差数列等差数列的前n项和【重点难点解析】这两节的主要知识点是:等差数列的定义、通项公式,等差数列的性质,前n项和的公式.1.等差数列的定义顾名思义:“等差”的意思就是差相等,但于减法没有交换律,因此,要说清楚被减数和减数,等差数列的定义就在于要说清楚这一点.定义1:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.定义2:当n∈N且n≥2时,总有an?an?1?d(d是常数) 成立,那么数列{an}叫做等差数列,常数d叫做公差.定义1是用文字表述的,而定义2是通过递推式an?an?1?d来定义等差数列的,形式不同,实质相同.定义1的语言叙述可以在头脑中形成认识,定义2便于在数学的逻辑推理和运算中使用,两者相辅相成.根据定义,我们可以得到等差数列的构造方法:只要已知a1和d,那么只要逐次“加d”就可得到等差数列的各个项:a1,a1?d,a1?2d,a1?3d,? 2.通项公式等差数列的通项公式是其定义的自然延伸.方法一:定义知a2?a1?d a3?a1?2d a4?a1?3d ? an?a1?(n?1)d 这就是通项公式.方法二:an?an?1?d知a2?a1?d a3?a2?d a4?a3?d 第 1 页共9 页? an?an?1?d 把上述(n-1)个等式相加,得an?a1?(n?1)d 所以an?a1?(n?1)d 对等差数列的通项公式可以从以下几个方面去认识:①从已知数和未知数的角度看:通项公式中含有a1,d,n,an四个量,其中已知任意三个量的值,那么第四个量的数值就是未知数,通项公式就是方程,解之,可得第四个量的具体数值.②从常量和变量的角度看:对于一个确定的等差数列,a1和d是常量,n和an是变量,an是n的函数,而且是一次函数:an?d?n?(a1?d),其图象是坐标平面n?O?an上,位于右半平面,以点(1,a1)为端点,斜率为d的射线上的一些孤立的点.③从变形的角度看:从通项公式中,解出a1,得a1?an?(n?1)?(?d) 和通项公式相比较,可以认为an是第一项,a1是第n项,此时公差是(-d),也就是说,可从两个不同的方向认识同一个等差数列.沿a1?an的方向公差为d,那么an?a1的方向,公差为(-d).又an?a1?(n?1)d am?a1?(m?1)d 相减,得an?am?(n?m)d 即an?am?(n?m)d 若n>m,则以am为第一项时,an是第n-m+1项,且m→n 公差为d,故这实际上与通项公式相通;若n an?am?(m?n)(?d)实际上与通项公式相通;因此,这个公式可以认为是广义的通项公式.④从发展的角度看:若{an}是等差数列,则ap?a1?(p?1)d aq?a1?(q?1)d 第2 页共9 页所以ap?aq?2a1?(p?q?2)d 同理am?an?2a1?(m?n?2)d 因此有如下命题:在等差数列{an}中,如果p+q=m+n(p,q,m,n∈N*),那么ap?aq?am?an.3.前n项和公式设{an}是等差数列,于n+1=(n-1)+2=(n-2)+3=? 所以an?a1?an?1?a2?an?2?a3?? 因此在求和Sn?a1?a2?a3???an①时,使用了“倒序相加”的方法,即Sn?an?an?1?an?2?an?3???a1 ②①+②得2Sn?(a1?an)?(a2?an?1)?(a3?an?2)???(an?a 1) ?n?(a1?an) 所以Sn?n(a1?an) 2特别地,于a1?a2n?1?2an 所以S2n?1?(2n?1)?an 若把an?a1?(n?1)d代入Sn中,有Sn?n?a1?1?n?(n?1)?d 2对于等差数列的前n项和的公式,可以从以下几个方面去认识:①从已知数和未知数的角度看:前n项和的公式中含有a1,an,n,Sn四个量(或a1,n,d,Sn四个量),已知其中任意三个量的值,那么第四个量的数值就是未知数,前n项和的公式就是方程,解之,可得第四个量的具体数值.②从常数和变数的角度看:对于一个确定的数列,a1和d是常数,n 和Sn是变数,Sn是n的二次函数:Sn?d2dn?(a1?)?n 22第3 页共9 页。
高中数学解决等差数列前n项和的最值问题
解决等差数列前n项和的最值问题,有三种解法,函数法是通解通法,其他两种方法则要根据条件决定能否使用。
若数列是等差数列,是其前n项和,则
,其结构是以n为自变量的二次函数,从而数列的最值问题可转化为二次函数的最值问题。
例1、等差数列中,,是前n项和且,求当n为何值时,最大。
解法1(图象法):设,由,,可知
d<>且二次函数图象的对称轴,故当n=13或14时,最大。
解法2(利用):由,知,
,可得,即。
又,可知当n<>时,。
当n>14时,。
可得。
故当n=13或14时,最大。
解法3(函数法):由,可知
,整理得。
所以。
故当n=13或14时,最大。
例2、是等差数列,,,是前n项和,求当n 为何值时,最大。
分析:,。
由,得。
然后解法同上(有兴趣的同学不妨试一试。
)
例3 等差数列中,,,是其前n项和,求当n为何值时,最大。
分析:该题从形式上完全等同于例2,但却不能化为例2的形式。
好友都在看:
又到了吃饺子的时候!白白胖胖、热热乎乎的饺子,是冬天的最大慰籍
小明学校的幽默故事搞笑的很呐!
爱上就不会轻易放弃的星座
150-170cm外套穿搭指南,比例好不好就看这一波!
'有本事冲我来,别在家长会上吓唬我爸!'看完这些孩子的诗,甘拜下风
高中数学解题的七层境界,你修炼到了第几层?
英语常用的62个英语句型,学英语须掌握
高考英语作文:能加分的100个好句子!(附译文+同类句型)。
七夕,古今诗人惯咏星月与悲情。
吾生虽晚,世态炎凉却已看透矣。
情也成空,且作“挥手袖底风”罢。
是夜,窗外风雨如晦,吾独坐陋室,听一曲《尘缘》,合成诗韵一首,觉放诸古今,亦独有风韵也。
乃书于纸上。
毕而卧。
凄然入梦。
乙酉年七月初七。
-----啸之记。
等差数列的前n 项和·例题解析【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22. ∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a 6=a 1+5d ,也可以不必求出a n 而直接去求,所列方程组化简后可得++相减即得+,a 2a 9d =28a 4d =25a 5d =36111⎧⎨⎩即a 6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】 在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解 由已知,第一个数列的通项为a n =3n -1;第二个数列的通项为b N =5N -3若a m =b N ,则有3n -1=5N -3即=+n N 213()N -若满足n 为正整数,必须有N =3k +1(k 为非负整数). 又2≤5N -3≤197,即1≤N ≤40,所以N =1,4,7,…,40 n=1,6,11,…,66 ∴ 两数列相同项的和为 2+17+32+…+197=1393【例3】 选择题:实数a ,b ,5a ,7,3b ,…,c 组成等差数列,且a +b +5a +7+3b +…+c =2500,则a ,b ,c 的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b , ∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d2500=n 2 n 50n 1n n n n ()()--1212∴a 50=c=1+(50-1)·2=99 ∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d ①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) dS (n 1)2(d)n +1n +1()()n nn n++1212由已知,有′化简,得解之,得④S S n ndn nd ndnd n n ++=+++-=+-=111121229131222913()()()()nd =511由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m +n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12解方程组得:d =-2,a 1=9 ∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n ∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和. 【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和. 解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2 ∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,=【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n=+231100100,则等于[ ]A 1BCD ....23199299200301分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n1001002312=+解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n nn nn n=+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n=+231可设S n =2n 2k ,T n =n(3n +1)k ∴∴××a b S S T T n k n kn n k n n k n n n n a b n nn n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()]说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n=+231S T S =2nk T =(3n 1)k n n n nk 是常数,就不对了. 【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20; (4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值. 分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32 (2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n +21n +2n +2251故这几个数为首项是,末项是,公差为的个数.21111286112351223(3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21 ∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a(4)∵a n =33-3n ∴a 1=30S =(a +a )n2n 1n ·×=-=-+=--+()()633232632322123218222n nn nn∵n ∈N ,∴当n=10或n=11时,S n 取最大值165. 【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列. 证 设这个数列的第n 项为a n ,前n 项和为S n . 当n ≥2时,a n =S n -S n-1∴a n =(4n 2+3n)-[4(n -1)2+3(n -1)] =8n -1当n=1时,a 1=S 1=4+3=7由以上两种情况可知,对所有的自然数n ,都有a n =8n -1 又a n+1-a n =[8(n +1)-1]-(8n -1)=8 ∴这个数列是首项为7,公差为8的等差数列.说明 这里使用了“a n =S n -S n-1”这一关系.使用这一关系时,要注意,它只在n ≥2时成立.因为当n =1时,S n-1=S 0,而S 0是没有定义的.所以,解题时,要像上边解答一样,补上n =1时的情况.【例12】 证明:数列{a n }的前n 项之和S n =an 2+bn(a 、b 为常数)是这个数列成为等差数列的充分必要条件.证 ⇒由S n =an 2+bn ,得 当n ≥2时,a n =S n -S n-1 =an 2+bn -a(n -1)2-b(n -1) =2na +b -a a 1=S 1=a +b∴对于任何n ∈N ,a n =2na +b -a 且a n -a n-1=2na +(b -a)-2(n -1)a -b +a =2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d=d n(a d)=d 2n 11=+··+-n n n nn n a d()()()-++-1212221 若令,则-,即d d 22=a a =b 1S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件.说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=.c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有S na d m S ma d n (m n)a d =n mn 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()()=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd ∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27 nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等 差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n +1⎧⎨⎩∵a 1=25,S 9=S 17∴×+××+×,解得-9252d =1725d d =29817162∴a n =25+(n -1)(-2)=-2n +27 ∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。