!实验五 晶体管混频电路
- 格式:docx
- 大小:928.85 KB
- 文档页数:4
混频器仿真实验混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。
一、晶体管混频器电路仿真本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。
电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。
(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。
(3)本振信号与基极偏压Eb共同构成时变工作点。
由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。
工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。
在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。
1、直流工作点分析使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。
注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。
因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。
若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。
2、混频器输出信号“傅里叶分析”选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为:基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。
在图中指出465KHz中频信号频谱点及其它谐波成分。
注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。
二、模拟乘法器混频电路模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。
实验五晶体管混频电路
一、实验目的 1.熟悉晶体管混频电路的基本工作原理。
2.了解混频电路的多种类型及构成,分析实验现象。
3.二、实验仪器 1.模拟双踪示波器CS-4135A
4.一台2.数字双踪示波器TDS-1002B 一台
5.3.数字万用表VC88E 一台4.DDS函数信号发生器DG1022
一台 5.实验电路板G6 一块三、实验原理及电路晶体管混频电路是一种具有较高变频增益的电路,在中短波接收机和测量仪器中曾被广泛的应用。
混频电路的功能是将载波频率为fs(非固定频率)的调幅波不失真地变换为另一载波频率fi(固定中频频率)的调幅波,而保持原调制信号不变。
混频电路的原理框图见图5-1所示。
混频电路常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号uo,并与输入信号us经混频电路混频,产生的差频信号经窄带通滤波器鉴出。
四、实验内容及数据分析本实验电路的特点是输入信号与本振信号分别从基极和发射极注入,相互干扰产生的牵引现象可能性小,输入阻抗小,不易过激励,输出波形好,失真小。
1.静态工作点的测量接通12V电源,测量晶体管V1、V2、V3的工作电压,判断晶体管电路是否工作正常。
调节RP1、RP2使晶体管V1、V3的基极电压约为3.8V,用万用表测量V1、V3的发射极的电压,约为3.1V左右,V2的基极电压约为1.7V,V2的发射极电压约为1V,若工作点的电压没有大的出入,即可确定实验电路工作正常。
2.中频放大的选频特性(1)测量输出信号的幅度(或峰峰值)和记录波形。
实验5 晶体三极管混频实验一、实验准备1.做本实验时应具备的知识点:●混频的概念●晶体三极管混频原理●用模拟乘法器实现混频2.做本实验时所用到的仪器:●晶体三极管混频模块●LC振荡与射随放大模块●高频信号源●双踪示波器二、实验目的1.进一步了解三极管混频器的工作原理;2.了解混频器的寄生干扰。
三、实验内容1.用示波器观察输入输出波形;2.用频率计测量混频器输入输出频率;3.用示波器观察输入波形为调幅波时的输出波形。
四、基本原理混频器的功能是将载波为(高频)的已调波信号不失真地变换为另一载频f i(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535-1605KHZ的已调波信号变为中心频率为465KHZ的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器,外差频率计等。
混频器的电路模型如图 5-1所示。
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号U L,并与输入信号US经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器,本实验采用晶体三极管作混频电路实验。
图5-2是晶体三极管的混频器电路,本振电压U L频率为(8.8MHZ)从晶体管的发射极e输入,信号电压Us(频率为6.3MHZ)从晶体三极管的基极B输入,混频后的中频(Fi=F L-Fs)信号由晶体三管的集电极C输出。
输出端的带通滤波器必须调谐在中频Fi上,本实验中频为Fi=F L-Fs=8.8MHZ-6.3MHZ=2.5MHZ。
为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压Us和本振电压U L外,不可避免地还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干扰,影响输入信号的接收。
实验五晶体三极管混频实验一、实验内容1、掌握了解三极管混频器的工作原理;2、了解混频器的寄生干扰。
二、实验原理1、混频器的工作原理混频器的功能是已调波信号(高频)不失真地变换为另一已调波信号,保持原调制规律不变。
为实现混频功能,混频器件必须工作在非线性状态,混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅高频信号UL,与输入信号US经混频器后所产生的差频信号,经带通滤波器滤出。
除输入信号电压Us和本振电压UL外,还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干扰,影响输入信号的接收。
干扰是由于混频不满足线性时变工作条件而形成的,不可避免,其中影响最大的是中频干扰和镜像干扰。
2、实验电路图中,本振电压为11.2MHZ从晶体管的发射极e输入,信号频率为8.2MHZ 从晶体三极管的基极B输入,混频后的中频信号由晶体三管的集电极C输出。
输出端的带通滤波器必须调谐在中频Fi上,本实验中频为3MHZ。
三、实验内容1、用频率计测量混频器的输入输出频率,观察输入输出信号的波形;2、用示波器观察输入波形为调幅波时的输出波形。
四、实验步骤(一)模块上电将LC振荡器模块③晶体三极管混频器模块④接通电源。
(二)中频频率的观测1、将LC振荡器调整到“串S”、1C09(150P)状态下,其产生的振荡频率为11.9MHZ信号作为本实验的本振信号,接晶体三极管混频器本振输入2P01,高频信号发生器输出8.9MHz,VP-P=0.5V信号接晶体三极管混频器本振输入2P02。
用示波器观测2TP03波形,测量其中频值。
顺时针调整2W01,输观察2TP03的波形变化。
2、混频的综合观测。
将调制信号为1KHZ载波频率为8.9MHZ的调幅波,作为本实验的晶体三极管混频器射频输入,用双踪示波器的观察2TP01、2TP02、2TP03各点波形,特别注意观察2TP02和2TP03两点波形的包络是否一致。
实验五混频器电路设计一、实验目的1、加强对混频器概念的认识;2、掌握混频器电路工程设计方法;3、学会对电路性能进行研究。
二、预习要求1、复习混频器的有关课程内容;2、仔细阅读参考资料;3、设计电路图,并写明参数的设计过程;三、设计要求1、设计一个晶体管混频电路,包括LC带通滤波器;2、输入信号频率f0=16.455MHz,本振信号频率f1=14MHz左右(根据本组本振频率决定),中频频率f2=2.455MHz(f2=f0-f1);3、电源电压Vcc=9V(建议:工作电流Ieq=0.1-0.5mA);4、混频器工作点连续可调;5、混频输出波形目测无失真;四、电路调测与性能研究1、寻找混频器最佳工作点Ie(opt)在本振信号V1=500mV,输入单频正弦信号Vi=30mV时,调节混频器工作点,找出中频信号不失真输出幅度最大的Ie(opt),并测出LC带通的3dB宽带;2、在Ie=Ie(opt)、本振信号V1=500mV情况下,用示波器观察输出信号频率、波形。
(1)输入信号为Vi=30mV单频正弦波(f0=16.455MHz);(2)输入信号为Vi=30mV受1KHz信号调制的30%标准调幅波(载频f0=16.455MHz);3、本振信号幅度对混频器性能的影响在Ie=Ie(opt)情况下,输入信号为V1=30mV的单频正弦波,V1分别为100mV emf、1000mVemf时,并与2(1)的实验结果相比较;五、实验报告要求1、设计方案论证。
包括:电路形式的选取、参数的设计、估算、研究内容的完成情况;2、关于电路调测过程中方案修改的说明,并画出标有最终元件参数的实验电路;3、实验数据及研究内容的整理、分析;4、设计制作过程中遇到的主要问题及解决办法。
六、实验室可提供的元器件三极管:2N3904(NPN)七、参考资料1、董在望,陈雅琴等,《通信电路原理》(第二版),高等教育出版社,2002年,p231-244。
晶体管混频电路一.实验目的1.了解调幅接收机的工作原理及组成2.加深对混频概念的认识。
二.实验原理混频电路是超外差接收机的重要组成部分,它的作用是将载频为f C的已调信号u S(t)不失真地变换成载频为f I的已调信号u I(t)(固定中频),其电路框图如图一所示。
它是将输入调幅信号u S(t)与本振信号(高频等幅信号)u L(t) 同时加到变频器,经频图1 混频电路框图率变换后通过滤波器,输出中频调幅信号u I (t),u I (t) 与u S(t) 载波振幅的包络形状完全相同,唯一的差别是信号载波频率f C变换成中频频率f I。
混频器有很多种,在高质量的通信接收机中常采用二极管环形混频器和双差分对混频器,而在一般的广播接收中则通常采用晶体管混频器。
本实验电路采用的是晶体三极管混频电路,本振信号由晶体振荡器产生,其频率为6.965MHz,混频后成生的中频信号频率为465KHz。
完整的电路中还包括包络检波电路,可以观察到变频后的包络和检波后还原的低频信号波形。
混频(调幅接收)电路、调频接收电路实验板(G7)的完整实验电路见图2。
三.实验仪表设备1.双踪示波器2.万用表3.XFG-7高频信号发生器(或其他可成生调幅信号的高频信号源)4.高频电路学习机5.混频(调幅接收)电路、调频接收电路实验板(G7)图2 混频(调幅接收)电路、调频接收电路四.实验内容及步骤1.晶体本机震荡电路的调整⑴按图连接好+12V电源。
将J3的1、2端断开,暂时不要使本振信号接入混频电路。
⑵用示波器在TP3处观察波形,其最大不失真波形应接近6V,最小振荡电压大约为0.5V左右,调整CT2,可改善振荡器的谐振条件。
⑶调整Rp3,使输出电压为1.4V左右待用。
2.接收回路的调整将扫频仪的输出探头和检波探头同时接到TP1,调整T1或CT1,使输入回路谐振在6.5MHz。
6.5MHz3.中放电路及混频电路的调整⑴用RP1、RP2电位器调整晶体管V1和V2的工作点,使V1e为0.6V,V2e为1V。
晶体管混频器实验报告
本实验目的在于探究晶体管混频器的工作原理及其应用,并验证其在信号输入和输出方面的性能。
实验原理:
晶体管混频器是一种基于非线性元件工作的混频器,在其输入端口处输入的两个信号经过非线性元件作用,产生新的信号输出到输出端口。
晶体管混频器主要由晶体管、滤波器和耦合元件组成。
其中,晶体管作为非线性元件起到混频的作用,滤波器则用于去除杂散信号,耦合元件则用于将输入信号耦合到晶体管的基极和集电极上。
实验步骤:
1. 将晶体管混频器连接至示波器和信号源。
2. 调节信号源输出频率,使其与晶体管混频器的本振频率相同。
3. 调节混频器输入信号的幅值和相位,记录输出信号的幅度和
相位。
4. 分别调节混频器输入信号的频率,并记录输出信号的幅度和
相位。
实验结果:
经过实验,我们发现晶体管混频器的输入信号幅度和相位对输出信号有很大的影响。
当输入信号的幅度和相位都相同时,输出信号的幅度最大。
同时,当输入信号的频率接近本振频率时,输出信号的幅度也会增大。
但是,当输入信号的频率与本振频率相差过大时,输出信号的幅度会急剧下降。
结论:
晶体管混频器是一种有效的信号混频器,能够在信号输入和输出方面提供优异的性能。
在实际应用中,我们可以通过调节输入信号的幅度、相位和频率来控制输出信号的幅度和相位,从而实现信号混频、调制和解调等多种功能。
晶体管混频器实验报告
通过晶体管混频器的实验,掌握混频器的原理和使用方法,了解混频器在通信领域的应用。
实验原理:
混频器是一种非线性器件,利用其非线性特性将两路信号进行混合,产生出频率的和与差信号。
晶体管混频器是一种常用的混频器类型,其结构简单、易于制作和使用。
晶体管混频器主要由一个局部振荡器、一个射频输入端和一个中频输出端组成。
当局部振荡器输出的频率与射频信号的频率相等时,混频器产生出一个中频信号。
该中频信号的频率为局部振荡器频率与射频信号频率的差值。
如果局部振荡器频率高于射频信号频率,则中频信号为正频率;反之,则中频信号为负频率。
实验步骤:
1. 搭建晶体管混频器电路,将局部振荡器和射频输入端连接到同一个天线上。
2. 调整局部振荡器频率,使其与射频信号频率相等。
3. 连接中频输出端到示波器上,观察输出波形。
4. 改变局部振荡器频率,观察中频信号的变化。
5. 将输入信号改为正弦波或方波信号,观察输出信号的差异。
实验结果:
实验中,我们成功搭建了晶体管混频器电路,并通过调整局部振荡器频率,产生了中频信号。
在观察中频信号时,我们发现其频率为
局部振荡器频率与射频信号频率的差值。
我们还发现,当局部振荡器频率高于射频信号频率时,中频信号为正频率;反之,则中频信号为负频率。
在改变输入信号为正弦波或方波信号时,我们观察到输出信号的波形有所不同,但仍能产生中频信号。
实验结论:
晶体管混频器是一种常用的混频器类型,其结构简单、易于制作和使用。
通过实验,我们了解到了晶体管混频器的原理和使用方法,并掌握了其在通信领域中的应用。
实验五混频器一、实验目的:1. 掌握晶体三极管混频器频率变换的物理过程和本振电压V。
和工作电流Ie对中频输出电压大小的影响。
2. 掌握由集成模拟乘法器实现的平衡混频器频率变换的物理过程3. 比较晶体管混频器和平衡混频器对输入信号幅度及本振电压幅度要求的不同点。
二、实验内容:1.研究晶体管混频器的频率变换过程。
2 •研究晶体管混频器输出中频电压V i与混频管静态工作点的关系。
3•研究晶体管混频器输出中频电压V i与输入本振电压的关系。
4. 研究平衡混频器的频率变换过程。
三、基本原理混频器常用在超外差接收机中,它的任务是将己调制(调幅或调频)的高频信号变成已调制的中频信号而保持其调制规律不变。
本实验中包含两种常用的混频电路:晶体三极管混频器和平衡混频器。
其实验电路分别如图6-1、6—2所示。
图6—1为晶体管混频器,该电路主要由VT8(3DG6或9014)和6. 5MHZ选频回路(CP3)组成。
10K电位器(VR13 )改变混频器静态工作点,从而改变混频增益。
输入信号频率fs= 10MHZ,本振频率fo = 16.455MHZ,其选频回路CP3选出差拍的中频信号频率f i= 6.5MHZ,由J36 输出。
图6—2为平衡混频器,该电路由集成模拟乘法器MC 1496 完成。
MC1496 模拟乘法器,其内部电路和引脚参见4—l,MC1496 可以采用单电源供电,也可采用双电源供电。
本实验电路中采用十12V,一9V供电。
VR19 (电位器)与R95 (10K? )、R96 (10K?)组成平衡调节电路,调节VR19可以使乘法器输出波形得到改善。
CP5为6. 5MHz选频回路。
本实验中输入信号频率为fs= 10MHZ,本振频率fo = 16.455MHZ。
图6—3 为16. 455MHZ 本振振荡电路,平衡混频器和晶体管混频器的本振信号可由J43 输出。
图6-1晶体管混频电路IT ~n 1— *—R83 7"R8S fR83 -z=rZZ2(6.5M)516KS卄12VCP5TR95 1OKs To 欝 SIO+■;: SKJ- 亠 BIAS -如叽 .''-CARt川沁 ..烹 I ■・ W 二■■"'.■ . ?.<L . L.~ ? 1”- F" ■■- --■■■-_■ -・51 R87 C98 if 廻1Q21BZ.OXTT ?1K 0UT+OOT- R97 1K图6-2平衡混频电路L11 5.6UH103图6-3 16.455MHZ 本振振荡电路四、实验步骤(一)晶体管混频器P.H.OUTU8C97102105VR19 504T2 36+12V 12 .6UHC83 1Q2J50 BZ.IN1熟悉实验板上各元件的位置及作用2 •观察晶体管混频前后的波形变换:将J28短路块连通在C.DL , J34 (BZ.IN )短路块连接在下横线处,平衡混频中的J49断开,即将16.455MHZ本振信号加入晶体管混频器上,将10 MHMHz100mV左右的高频小信号加到晶体管混频器信号输入端J32处,此时短路块J33应置于开路。
晶体管混频器实验报告
实验目的:通过搭建晶体管混频器电路,学习混频器的工作原理和特点,掌握其在无线电通信中的应用。
实验器材:晶体管、电容、电感、电源、示波器等。
实验原理:晶体管混频器是一种将两个不同频率的信号混合成一个信号的电路。
在混频器中,晶体管扮演着开关的角色,完成信号的混合。
当两个信号进入混频器时,它们会经过晶体管的交替导通和截止,产生一个新的信号,其频率为两个输入信号的差值。
实验步骤:
1.根据电路图连接电路。
2.接通电源,调节电源电压至合适值。
3.将信号源接入电路中。
4.调节示波器,观察输出波形。
5.改变输入信号频率,观察输出波形。
6.记录实验数据,分析实验结果。
实验结果:通过实验可知,晶体管混频器可以将两个不同频率的信号混合成一个信号,并输出到示波器上。
当输入频率分别为1MHz 和3MHz时,混频器输出的信号频率为2MHz。
同时,改变输入信号频率可以得到不同的输出信号频率。
实验结论:晶体管混频器是一种常用的无线电通信电路,其混频效果优异,可以将不同频率的信号混合成一个信号,实现信号的转换和处理。
在实践应用中,晶体管混频器广泛应用于无线电接收、发射、
调制等领域。