实验5 三种基本组态晶体管放大电路
- 格式:doc
- 大小:1.83 MB
- 文档页数:8
晶体管放大电路的三种组态及应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!晶体管放大电路的三种组态及应用晶体管放大电路是电子电路中常见且重要的一种电路类型,主要用于信号放大。
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
晶体管放大电路实验报告晶体管放大电路实验报告引言:晶体管是一种半导体器件,广泛应用于电子电路中。
晶体管放大电路是利用晶体管的放大特性,将输入信号放大到更高的电压或电流水平,以实现对信号的增强和处理。
本次实验旨在通过搭建晶体管放大电路,探究其工作原理和性能。
一、实验目的本次实验的目的是通过搭建晶体管放大电路,了解晶体管的基本工作原理和特性,并观察不同参数对电路性能的影响。
二、实验原理晶体管放大电路主要由晶体管、电阻和电容组成。
晶体管分为三个区域:发射区、基区和集电区。
通过控制基区的电流,可以调节晶体管的放大倍数。
电阻和电容则用于稳定电路和滤波。
三、实验步骤1. 准备工作:收集所需材料和仪器,包括晶体管、电阻、电容、电压源和示波器等。
2. 搭建电路:按照实验要求,连接晶体管、电阻和电容,形成放大电路。
3. 调节电压:根据实验要求,调节电压源的输出电压,使其适合晶体管的工作范围。
4. 测量电路参数:使用示波器和万用表等仪器,测量电路中的电压、电流和频率等参数。
5. 观察输出信号:输入不同的信号波形,观察输出信号的放大效果和失真情况。
6. 记录实验数据:准确记录实验过程中的各项数据和观察结果。
四、实验结果与分析通过实验测量和观察,我们得到了一系列数据和图表。
根据这些数据和图表,我们可以得出以下结论:1. 当输入信号的幅度过大时,输出信号可能会出现失真现象,即波形变形或削平。
2. 输入信号的频率越高,输出信号的失真程度越大。
3. 通过调节电路中的电阻和电容数值,可以改变电路的增益和频率响应。
五、实验总结通过本次实验,我们深入了解了晶体管放大电路的工作原理和性能特点。
实验过程中,我们掌握了搭建电路、调节参数和测量数据的方法。
通过观察和分析实验结果,我们进一步认识到晶体管放大电路的优点和局限性。
六、实验改进在实验过程中,我们发现了一些问题和改进的空间:1. 数据测量的准确性有待提高,可以采用更精密的测量仪器和方法。
三极管放大电路原理和组态三极管放大电路是一种常见的电子放大器电路,通常用来放大电压或电流信号。
其基本原理是利用三极管的放大特性,将输入信号放大到更大的幅度,以实现信号的放大。
三极管放大电路有多种组态,包括共射极、共集电极和共基极等。
下面将详细介绍三极管放大电路的原理和不同组态。
一、三极管放大电路原理三极管是一种有源元件,具有放大作用。
在正常工作状态下,三极管的基极、发射极和集电极之间形成两个PN结,即BE结和BC结。
当将基极与发射极之间施加一个正向工作电压,同时将集电极与基极之间施加一个反向工作电压,就可以将三极管带入放大工作状态。
三极管的放大原理主要有两个:电流放大和电压放大。
当输入信号施加到三极管的基极时,会引起基极电流的变化,这个变化的电流会影响三极管的发射极电流和集电极电流。
这种电流变化将会引起电压的变化,而这个电压变化正是我们想要放大的信号。
具体来说,当输入信号为正周期性变化时,三极管的发射极电流也会呈现同样的正周期性变化。
而由于三极管的电流放大作用,发射极电流的变化将引起集电极电流的更大变化,进而产生更大的电压变化。
这种电流的放大作用使得输入信号的幅度被放大。
因此,通过适当的电路设计和控制,我们可以实现对输入信号的放大。
二、三极管放大电路的组态1.共射极放大电路共射极放大电路是最常见的三极管放大电路之一,也是最基本的组态。
它将输入信号接在三极管的基极上,输出信号则取自三极管的集电极。
在这种组态下,输入和输出信号之间是反向的,即输入信号的增大将导致输出信号的减小,因此需要使用耦合电容将输入和输出信号隔离开来。
共射极放大电路具有电压放大倍数大、输入输出阻抗低等优点,适用于需要较大电压放大的场合。
2.共集电极放大电路共集电极放大电路的输入信号接在三极管的基极上,输出信号则取自三极管的发射极。
在这种组态下,输入和输出信号是同相的。
由于输出电压取自三极管的发射极,所以输出信号的阻抗较低,可以直接驱动负载。
3.2 三种基本组态放大电路掌握三极管三种组态放大电路的工作原理; 会对放大电路的主要性能指标进行分析;了解场效应管放大电路的工作原理。
一、共发射极放大电路(一)电路的组成直流电源V CC 通过R B1、R B2、R C 、R E 使三极管获得合适的偏置,为三极管的放大作用提供必要的条件, R B1、R B2称为基极偏置电阻,R E 称为发射极电阻,R C 称为集电极负载电阻,利用R C 的降压作用,将三极管 集电极电流的变化转换成集电极电压的变化,从而实现信号的电压放大。
与R E 并联的电容C E ,称为发射极 旁路电容,用以短路交流,使R E 对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小 越好,因此,在低频放大电路中CE通常也采用电解电容器。
(二)直流分析断开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点 稳定直 电流通路。
电路工作要求:I 1≥ (5 ~ 10)I BQ ,U BQ ≥ (5 ~ 10)U BE Q求静态工作点Q:方法1.估算稳定Q点的原理:方法2.利用戴维宁定理求IBQ(三)性能指标分析将放大电路中的C1、C2、CE短路,电源VCC短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。
E1.电压放大倍数2.输入电阻二、共集电极放大电路(射极输出器、射极跟随器) (二)性能指标分析1.电压放大倍数2.输入电阻R 'L = R E // R L3.输出电阻共集电极电路特点 共集电极电路用途 1.U o 与U i 同相,具有电压跟随作用 1.高阻抗输入级 2.无电压放大作用 A u <1 2. 低阻抗输出级 3.输入电阻高;输出电阻低 3.中间隔离级例题2.电路如图所示,已知三极管的β=120,R B = 300 k Ω,r 'bb = 200 Ω,U BEQ = 0.7 V R E = R L = R s = 1 k Ω,V CC = 12V 。
BJT(双极型晶体管)放大电路的三种基本组态如下:
1. 共射放大电路:这是最基本的组态,也是其他两种组态的基础。
在这个设置中,输入信号控制基极电流,从而改变集电极电流,并最终改变输出电压。
这种关系提供了放大作用。
在共射放大电路中,信号从输入端加入,通过晶体管放大后,从输出端取出,这就完成了一次放大过程。
2. 共集放大电路,也被称为射极跟随器或射极输出器。
它的输入阻抗高,输出阻抗低,具有电压放大和电流驱动的作用。
此外,由于输入电流对基极电压的影响相对较小,因此共集放大电路的频带也较宽。
这些特点使得它常用于输入级缓冲放大电路,以减少信号失真和提高信噪比。
3. 共基放大电路,它具有高输入阻抗和低输出阻抗的特点,但频率特性较差,增益较低。
由于这些特点,它通常用于作多级放大器的中间级或作为频率补偿电路使用。
以上三种组态各有其特点和应用范围。
在选择使用哪种组态时,通常会考虑信号的性质、频率响应、电压放大倍数以及电源电压等因素。
同时,BJT放大电路的设计和制作也涉及到许多其他因素,如电阻和电容的选择、电路的布线和接地等。
这些因素都会影响到放大电路的性能和稳定性。
以上内容仅供参考,建议到知识分享平台获取更多信息。
课程编号实验项目序号本科学生实验卡和实验报告信息科学与工程学院通信工程专业2015级1班课程名称:电子线路实验项目:三种基本组态晶体管放大电路2017——2018学年第一学期学号:201508030107 姓名:毛耀升专业年级班级:通信工程1501班四合院102 实验室组别:无实验日期:2017年12 月26日图5.1 工作点稳定的共发射极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数,再测量输出波形幅值,然后用下列公式计算输出电阻Ro;其中Vo是负载电阻开路时的输出电压;4、连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调整示波器A通道参数,再测量、计算电压放大倍数。
并说明旁路电容的作用。
(二)共集电极放大电路1、建立共集电极放大电路如图5.2所示。
NPN型晶体管取理想模式,电流放大系数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表设置为交流模式;图5.2 工作点稳定的共集电极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、仿照5.3.1中的步骤3求电路输出电阻。
(三)共基极放大电路1、建立共基极放大电路,如图5.3所示。
NPN型晶体管取理想模式,电流放大系数设置为50。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表;图5.3 工作点稳定的共基极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、仿照5.3.1步骤3求电路输出电阻。
晶体管放大电路实验报告doc晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一. 试验目的(1)掌握Multisium11.0仿真软件分析单级放大器主要性能指标的方法。
(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。
(3)测量放大器的放大倍数,输入电阻和输出电阻。
二. 试验原理及电路VBQ=RB2VCC/(RB1+RB2) ICQ=IEQ=(VBQ-VBEQ)/RE IBQ=ICQ/β;VCEQ=VCC-ICQ(RC+RE)晶体管单级放大器1. 静态工作点的选择和测量放大器的基本任务是不失真的放大信号。
为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。
若工作点选的太高会饱和失真;选的太低会截止失真。
静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流ICQ和管压降VCEQ。
本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。
当搭接好电路,在输入端引入正弦信号,用示波器输出。
静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。
当加大输入信号,两种失真同时出现,减小输入信号,两种(本文来自:/doc/2816991364.html, 小草范文网:晶体管放大电路实验报告)失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。
去点信号源,测量此时的VCQ,就得到了静态工作点。
2. 电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。
放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。
在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)o VO-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。
课程编号
实验项目序号
本科学生实验卡和实验报告
信息科学与工程学院
通信工程专业2015级1班
课程名称:电子线路
实验项目:三种基本组态晶体管放大电路
2017——2018学年第一学期
学号: 201508030107 姓名:毛耀升专业年级班级:通信工程1501班
四合院102 实验室组别:无实验日期: 2017年12 月26日
图5.1 工作点稳定的共发射极放大电路
2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上
Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端
电流表的读数计算输入电阻;
3、利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数,
再测量输出波形幅值,然后用下列公式计算输出电阻Ro;其中Vo是负载电阻
开路时的输出电压;
4、连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调
整示波器A通道参数,再测量、计算电压放大倍数。
并说明旁路电容的作用。
(二)共集电极放大电路
1、建立共集电极放大电路如图5.2所示。
NPN型晶体管取理想模式,电流放大系
数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入
端电流表设置为交流模式;
图5.2 工作点稳定的共集电极放大电路
2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大
屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;
3、仿照5.3.1中的步骤3求电路输出电阻。
(三)共基极放大电路
1、建立共基极放大电路,如图5.3所示。
NPN型晶体管取理想模式,电流放大系数设置为50。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表;
图5.3 工作点稳定的共基极放大电路
2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大
屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;
3、仿照5.3.1步骤3求电路输出电阻。
2、当将负载断开
电压放大倍数为40.6;
输出电阻:4.76kΩ
3、当将电容断开:
电容断开增益降低,约为3倍左右;
所以旁路电流作用是增大交流信号增益。
(二)共集电极放大电路
输入电阻:98.22kΩ
电压放大倍数:1
输出电阻:100Ω。
由此我们可以通过实践验证共集电极放大电路的基本特点:输入电阻大,输出电阻小,电压增益约等于1;
(三)共基极放大电路
输入电阻:38.22Ω
电压放大倍数:43.5
输出电阻:2.06kΩ。