第3章薛定谔方程及应用简例2(势阱 势垒 谐振子)
- 格式:ppt
- 大小:1.04 MB
- 文档页数:58
第一讲第讲主要内容振动和波动量子力学的诞生量子力学的基本原理薛定谔方程应用举例1薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子2薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子6一维无限深势阱中粒子能级有如下特点:维无限深势阱中粒子能级有如下特点:z能级量子化。
量子力学的普遍规律,束缚态(E <V 0)能级量离子化(离散的,非连续的)。
量子化能量的值要取决于束缚势能的具体情况。
值得指出的是,束缚粒子存在量子化这一事实,可简单和直接的由满足薛定谔方程的波函数应用边界条件就得到了。
z粒子的最低能级,这与经典粒子不同。
这是微观粒子波性的表静的波是有意的从02/2221≠=ma E πh 这是微观粒子波动性的表现,静止的波是没有意义的。
从不确定度关系也可以给予粗略的说明。
211zE ∝n ,能级分布是不均匀的。
CdSe量子点的吸收边和发射峰显著依赖尺寸大小。
可应用于:•生物标记•LED照明•平板显示•太阳能电池12薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子13扫描隧道显微镜20薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子21谐振子能量本征值ωh ⎟⎠⎞⎜⎝⎛+=21n E n ( n = 0,1,2, … )m ω=βz为系统的本征角频率z束缚态,能级量子化。
图1.12 线性谐振子的势能曲线及本征值最低几条能级上的谐振子能量本征函数:122α谐本)(x n ψ)(x n ψ)2exp()(4/10x x απψ−=)21exp(2)(224/11x x x ααπαψ−=1exp(1212222x x x ααα−−=)2p()(2)(4/12πψ29)21exp()132(3)(22224/13x x x x αααπαψ−−=2⏐ψn (x )⏐图1.16 n =10时线性谐振子的几率密度z 实线表示量子谐振子位置概率分布,虚线为经典谐振子的概率分布。
谐振子薛定谔方程的简单解法谐振子薛定谔方程是一个常见的量子力学问题,求解它的方法有许多种。
其中比较简单的一种方法是使用升降算符法,即通过引入升降算符,将原方程转化为一系列易于求解的简单形式。
具体来说,假设谐振子的薛定谔方程为:(-h^2/(2m) d^2/dx^2 + 1/2 kx^2)ψ(x) = Eψ(x)。
其中,h是普朗克常数,m是质量,k是弹性常数,E是能量,ψ(x)是波函数。
按照升降算符法的思路,我们可以定义两个算符a和a†,它们分别满足以下关系:aψ(x) = (√(mω/2h))(d/dx + (i/√2mω)x)ψ(x)。
a†ψ(x) = (√(mω/2h)) (d/dx - (i/√2mω)x)ψ(x)。
其中ω是谐振子的角频率,满足ω=√(k/m)。
容易证明,a†a和aa†的作用效果如下:a†aψ(x)=(1/2ωh)(p^2+(mωx)^2)ψ(x)-(1/2)ψ(x)。
aa†ψ(x) = (1/2ωh) (p^2 + (mωx)^2 + ωh)ψ(x)。
其中p是动量算符。
注意到上式中出现了p^2和x^2的和,这意味着我们可以将原方程改写为:(a†a+1/2)ψ(x)=(E/ωh)ψ(x)。
于是我们得到了简单的形式,可以逐层求解,直到得到某个特定的能级E的波函数。
具体过程如下:1.对于能量E,我们可以通过求解a†aψ(x)=vψ(x)的形式得到v,这里的v相当于E/ωh-1/2。
由于a†a的本征值是非负的,因此v必须大于等于0,即E/ωh必须大于等于1/2。
2.再对a†aψ(x)=vψ(x)做“降阶”,即对每个v对应的本征函数分别应用a算符,得到下一个v对应的本征函数。
这里需要注意,由于a算符作用后产生的新波函数在一般情况下不是归一化的,需要对其进行归一化。
3.重复步骤2,直到得到所需的能级E的波函数为止。
这种方法虽然比较简单,但需要一定的数学功底和物理理解能力。
在实际应用中,也可以使用其他更为高级的方法来求解谐振子的薛定谔方程,如行列式方法、路径积分方法等。
量子力学中的薛定谔方程及其求解量子力学是研究微观粒子行为的重要理论,其核心是薛定谔方程。
薛定谔方程描述了量子体系中粒子的波函数以及随时间演化的规律。
本文将介绍薛定谔方程的基本原理,并讨论一些常见的求解方法。
一、薛定谔方程的基本原理薛定谔方程是波动方程,描述了量子体系中粒子的行为。
它的一般形式为:iħ∂ψ/∂t = Hψ其中,i是虚数单位,ħ是约化普朗克常数,ψ是粒子的波函数,t 是时间,H是哈密顿算符。
薛定谔方程的左边代表了波函数随时间变化的导数,右边代表了粒子在量子力学描述下的总能量。
通过求解这个方程,我们可以得到波函数的时间演化规律,从而揭示粒子的行为。
二、薛定谔方程的求解方法求解薛定谔方程是量子力学中的关键问题,涉及到很多数学方法和物理概念。
下面介绍几种常见的求解方法。
1. 一维自由粒子的求解方法对于一维自由粒子,其哈密顿算符可以简化为动能算符,即H = -ħ^2/2m * ∂^2/∂x^2。
将这个算符代入薛定谔方程,可以得到一维自由粒子的薛定谔方程为:iħ∂ψ/∂t = -ħ^2/2m * ∂^2ψ/∂x^2这是一个简单的偏微分方程,可以通过分离变量法求解。
假设波函数可以分解为时间部分和空间部分的乘积,即ψ(x, t) = φ(x) * χ(t),代入薛定谔方程后可以分离变量,得到两个独立的常微分方程。
分别求解这两个方程,再将它们的解合并,即可得到一维自由粒子的波函数。
2. 一维势阱的求解方法一维势阱是限制粒子运动在有限空间内的一种势场。
在势阱中,波函数的形式将受到势场的影响。
求解一维势阱的薛定谔方程需要考虑势场对波函数的贡献。
对于势阱中的波函数,只有在势阱内部才能存在。
在势阱内部,薛定谔方程的形式与自由粒子类似,但是边界条件会影响波函数的形式。
边界条件一般为波函数在势阱边界处连续且导数连续。
通过求解这个边界问题,可以得到一维势阱中的波函数。
3. 二维和三维量子体系的求解方法对于二维和三维的量子体系,薛定谔方程将变为偏微分方程。
量子力学中的薛定谔方程在量子力学中,薛定谔方程是一个重要的基本方程,被广泛应用于描述微观粒子的行为和性质。
薛定谔方程以奥地利物理学家埃尔温·薛定谔(Erwin Schrödinger)的名字命名,是量子力学的基石之一。
薛定谔方程描述了体系的波函数随时间演化的规律,通过求解该方程,可以获得粒子在空间中的波函数及其相应的能量。
薛定谔方程是一个线性偏微分方程,一般形式为:\[i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H}\Psi(\mathbf{r}, t)\]其中,\[i\]表示虚数单位,\[\hbar\]为约化普朗克常数,\[\Psi(\mathbf{r}, t)\]是波函数,描述了粒子在空间中的分布情况随时间的变化。
方程右侧的\[\hat{H}\]是系统的哈密顿量(Hamiltonian),描述了体系的能量。
薛定谔方程是量子力学的基本方程之一,可以用来描述各种体系,包括原子、分子、固体和微观粒子等。
通过求解薛定谔方程,可以得到体系的波函数,波函数的模的平方代表了在某一时刻粒子出现在不同位置的概率分布。
由于薛定谔方程是一个偏微分方程,求解它需要考虑边界条件和初始条件。
对于简单的系统,如自由粒子,可以直接求解得到解析解。
但对于复杂的体系,如多电子原子或分子,一般需要采用数值方法进行求解。
量子力学的创立为描述微观世界的现象提供了全新的框架,薛定谔方程作为量子力学的基本方程,为我们理解微观粒子的行为和性质提供了强有力的工具。
通过求解薛定谔方程,我们可以预测和解释许多实验现象,如电子的能级结构、原子和分子的光谱等。
总结一下,薛定谔方程是量子力学中的基本方程,描述了体系的波函数随时间演化的规律。
通过求解薛定谔方程,我们可以获取体系的波函数及其相应的能量,从而揭示微观粒子的行为和性质。
薛定谔方程在量子力学的发展中起到了重要的作用,为我们认识和理解微观世界提供了重要的框架。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载薛定谔方程及其解法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容关于薛定谔方程定义及重要性薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提出的HYPERLINK "/view/2785.htm" \t "_blank" 量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。
是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到 HYPERLINK "/view/24951.htm" \t "_blank" 波函数的具体形式以及对应的能量,从而了解微观系统的性质。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。
表达式定态方程所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。
其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。
可化为薛定谔方程的解法初值解法;欧拉法,龙格库塔法边值解法;差分法,打靶法,有限元法龙格库塔法(对欧拉法的完善)给定初值问题有限元方法有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。