QC七大手法-直方图
- 格式:ppt
- 大小:2.21 MB
- 文档页数:33
QC七大手法-直方图一、什么是QC七大手法QC(Quality Control)七大手法是一种常用于解决质量问题和提高产品质量的方法。
它包含了七种常用的统计学手法,分别是:直方图、控制图、散点图、因果图、帕累托图、箱线图和流程图。
这些手法可以帮助我们分析和解决质量问题,以达到质量改进的目的。
本文将重点介绍其中一种手法——直方图。
二、直方图的基本概念直方图是一种用于显示数据分布情况的图表。
它通过将数据划分为一系列间隔,然后统计每个间隔内数据出现的频率,最终通过矩形条来呈现数据的分布情况。
直方图通常用于展示连续变量或离散变量的频率分布,可以帮助我们了解数据的分布规律和集中趋势。
三、绘制直方图的步骤1. 数据收集首先,我们需要收集相关的数据。
这些数据可以是产品的尺寸数据、质量数据或其他与质量有关的数据。
2. 数据整理在绘制直方图之前,我们需要对数据进行整理和分类。
将数据按照一定的规则进行分组,并记录每组数据的频数。
3. 确定间隔和组数在进行数据分组时,我们需要确定数据的间隔和组数。
间隔一般是根据数据的最大值和最小值来确定的,组数可以根据实际情况进行调整。
4. 绘制直方图绘制直方图可以使用各类数据分析软件、编程语言或绘图工具。
在绘图时,我们需要将每组数据的频数表示为相应的矩形条,并将矩形条按照一定的间隔排列。
5. 添加标题和注解为了使直方图更具可读性,我们可以添加标题和注解。
标题可以简要描述直方图的目的和内容,注解可以解释数据的分布情况和统计指标。
6. 分析直方图通过观察直方图,我们可以了解数据的分布情况和集中趋势。
例如,我们可以通过直方图来判断数据是正态分布、偏态分布还是离散分布。
同时,我们还可以通过直方图来确定数据的中位数、均值和标准差等统计指标。
四、直方图在QC中的应用直方图在QC中有广泛的应用,可以帮助我们分析和解决质量问题。
以下是直方图在QC中的一些常见应用场景:1. 检测质量问题通过绘制产品尺寸、质量或其他相关数据的直方图,我们可以快速发现质量问题。
直方图1、概念直方图是指:将某期间所收集的计量值数据(如:尺寸、重量、硬度……等)经分组整理成次数分配表,并以柱形予以图形化,以掌握这些数据所代表的情报。
直方图主要应用于:展示过程的分布情况。
图1表示了直方图的基本形状。
2、直方图的制作步骤A 、收集数据,至少要收集50~100个数据;B 、参照下表确定组数(或用N 的平方根确定):表1 分组对照表C 、确定组距(a)、找出最大数据X max 和最小数据X min ;(b)、求全距R 。
R=最大数据X max -最小数据X min (注:异常值除外); (c)、求组距C 。
C=全距R ÷组数K ;(d)、从测定单位的整数倍之数据中,找出接近的C 值的适当数据作为组距。
D 、决定各组参数及次数分配表(a)、取数据最小测量单位的1/2为组界值的单位; (b)、第一个境界值=最小值—1/2×最小测量单位;第二个境界值=第一个境界值+组距; 第三个境界值=第二个境界值+组距; 其它依此类推。
(c)(d)、制作次数分配表。
如下表:表2 次数分配表E 、依据次数分配表,制作起直方图。
纵轴代表次数(结果),横轴代表特性(要因),并于X 、Y 轴的最大值与最小值之间以等长度标出刻度。
如图2:图2 直方图F 、在图上标出图名,记入搜集数据的时间和其他必要的记录。
总次数(频数)、统计特征值均值)与S (标准偏差)是直方图上的重要数据,一定要标出。
3、直方图的作用①、由图形可以比较容易掌握制程的全貌(如:中心趋势,离散趋势,分配形状); ②、可了解制程的安定或异常状况; ③、与规格进行比较可判断制程能力。
4、直方图的常见分布形状①、常态形——左右对称,中间高两边渐低,表示制程安定,数据呈常态分配。
图3 常态型直方图图4 偏态型(偏左)直方图③、离岛型——制程分布中间有间断,呈离岛型,表示制程有异常。
图5 离岛型直方图④、双峰型——制程分布有两个高峰,表示制程为两种不同分配组合,需进行层别。
QC七大手法(一)-—直方图的制作直方图的作用:展示过程的分布情况,了解总体数据的中心和变异,并推测发展趋势.步骤一:搜集数据n,全部均匀的加以随机抽样.所搜集的数据应大于50以上.138 142 145 140 141 步骤二:找出最大值L和最小值S139 140 141 138 138 139 最大值L=148 最小值S=121144 138 139 136 137 137 步骤三:求全距(R)=最大值—最小值又叫极差131 127 138 137 137 133 R = L —S = 148 —121 = 27140 130 136 138 138 132 步骤四:决定组数K145 141 135 131 136 131 (1)其为: k=1+3.32log n n = 60134 136 137 133 134 132 (2) 公式一般对数据之分组可参照下表:135 134 132 134 129 数据数组数137 132 130 135 135 134 ~50 5~7136 131 131 139 136 135 51~100 6~10 例:取7组102~250 7~12250~10~20步骤五:求组距(h) (1 )组距=全距÷组数(h =R÷K)(2 )为便于计算平均数及标准差,组距常取为2,5或10的倍数。
例:h =27/7 =3.86, 组距取4 = 组界步骤六:求各组上组界,下组界(由小而大顺序)(1)第一组下组界=最小值—(最小测定单位/ 2 )第一组上组界=第一组下组界+组界第二组下组界=第一组上组界(2)最小测定单位整数位之最小测定单位1 小数点1位之最小测定单位为0。
1小数点2位之最小测定单位为0.01(3)最小数应在最小一组内,最大数应在最大一组内; 若有数字小于最小一组下组界或大于最大一组上组界值时,应自动加一组。
例:第一组=121—1/2=120.5~124.5 第二组=124.5~128.5 第三组=128.5~132.5第四组=132.5~136.5 第五组=136.5~140。
QC (旧)七大手法之五——直方图(histogram )第一小节 直方图的观察分析一.定义众所周知在相同的条件下制造出来的产品,其质量特性也不完全相同,但也不会相差太大,总是在一定范围内波动,而且这种波动有一定的规律性,直方图就是直观而形象地把质量分布规律用图形表示出来的统计工具。
直方图(histogram )是频数直方图的简称,又叫质量分布图、矩形图、柱形图、柱状图、频数图。
是指通过对生产过程中产品质量的分布状态的描绘与分析,来判断生产过程质量的一种常用方法,它是工序质量控制统计方法中的主要工具之一(另一工序质量控制工具就是控制图)。
直方图是一种几何图表,它是根据从生产过程中收集到的质量数据(通常不能少于50个,最少不能少于30个数据)分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方形矩形图。
十六世纪末十七世纪初英格兰人普莱菲和德国地理学者科洛玛是使用直方图的先驱者。
直方图的分类:直方图根据使用的各组数据是频数还是频率分为频数直方图与频率直方图;在表示分布时又分为一般直方图和累计直方图两种。
直方图的基本形式(格式):说明:横坐标表示产品的质量特性值(如尺寸、重量等计量值),在横坐标上划分了若干个间距相等的区间(即矩形的宽度表示数据范围的间隔)。
纵坐标表示在n 个数据中,落在各个区间里的频数(即反复出现在该区间的次数)(即高度表示在给定的间隔内数据出现的频数即数目)。
一个个直方形,其宽度取决于区间的宽度,其高度取决于该区间的频数(频数常用f 表示),n 表示样本大小(即样本量),X 表示样本中全体数据的平均值(表示分布中心),S 表示样本的标准偏差(S 表示质量特性离散程度,有的也称标准差)。
直方图适用于对于大量计量值数据进行整理加工,找出其统计规律,也就是分析数据的形态,以便对其整体的分布特征进行推断(即通过变化的高度形态表示数据的分布情况)。
直方图是从总体中随机抽取样本,对从样本中获得的数据进行整理后,用一系列等宽的矩形来表示数据。