QC七大手法之控制图
- 格式:doc
- 大小:156.00 KB
- 文档页数:5
QC七大手法引言质量控制(QC)是一种系列的活动,旨在确保产品或效劳符合预期的质量标准。
为了有效地进行QC,人们使用了各种手法和方法。
本文将介绍QC的七大手法,包括直方图、散点图、排列图、Pareto图、因果图、控制图和检查表。
通过运用这些手法,可以发现和解决质量问题,从而提高产品和效劳的质量水平。
直方图直方图是一种用来展示数据分布情况的图形,特别适用于连续型数据。
它将数据按照一定的区间划分,并将每个区间内的数据数量用柱状图表示。
通过直方图,我们可以直观地了解数据的分布情况,包括中心位置、离散程度等。
在QC中,直方图可以帮助我们判断一个过程是否稳定,并找出造成质量问题的原因。
散点图是用来展示两组数据之间关系的图形。
它将一组数据以点的形式表示在二维坐标系中,并通过点的位置来表示数据之间的关联性。
通过观察散点图,我们可以判断是否存在某种线性关系、相关性或者异常值。
在QC中,散点图可以帮助我们找出可能导致质量问题的因素,并进行相应的调整和改良。
排列图排列图是一种用来展示数据之间大小关系的图形。
它将数据按照一定的顺序排列,并以不同的长度或高度表示数据的大小。
通过排列图,我们可以清晰地看到数据之间的相对大小,从而找出可能存在的问题和瓶颈。
在QC中,排列图通常用于分析产品或效劳中的瑕疵程度,并制定相应的改良措施。
Pareto图是一种用来展示问题因素的重要性程度的图形。
它将问题因素按照重要性从大到小进行排序,并以条形图的形式表示。
通过Pareto图,我们可以清晰地看到哪些问题因素对整体质量影响最大,从而有针对性地进行改良。
在QC中,Pareto图被广泛应用于问题分析和改良活动中。
因果图因果图是一种用来展示问题因果关系的图形。
它利用图形化的方式将问题的各种可能原因进行分类和整理,并展示它们之间的关系。
通过因果图,我们可以分析问题的根本原因,从而采取相应的对策和改良措施。
在QC中,因果图常常用于问题解决和质量改良的过程中。
QC品管七大手法与质量管理八大原则七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图一、检查表检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。
例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S活动检查表、工程异常分析表等。
1组成要素①确定检查的项目;②确定检查的频度;③确定检查的人员.2、实施步骤①确定检查对象;②制定检查表;③依检查表项目进行检查并记录;④对检查出的问题要求责任单位及时改善;⑤检查人员在规定的时间内对改善效果进行确认;⑥定期总结,持续改进。
二、层别法层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别.层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用.例如:抽样统计表、不良类别统计表、排行榜等。
实施步骤:①确定研究的主题;②制作表格并收集数据;③将收集的数据进行层别;④比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。
三、柏拉图柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。
它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。
1、分类1)分析现象用柏拉图:与不良结果有关,用来发现主要问题。
A品质:不合格、故障、顾客抱怨、退货、维修等;B成本:损失总数、费用等;C交货期:存货短缺、付款违约、交货期拖延等;D安全:发生事故、出现差错等.2)分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A操作者:班次、组别、年龄、经验、熟练情况等;B机器:设备、工具、模具、仪器等;C原材料:制造商、工厂、批次、种类等;D作业方法:作业环境、工序先后、作业安排等.2、柏拉图的作用①降低不良的依据;②决定改善目标,找出问题点;③可以确认改善的效果。
QC七大手法完整版介绍七大质量控制手法是指通过一系列工具和技术来管理和控制产品或项目的质量,确保其达到预期的标准和要求。
以下是七大质量控制手法的完整版介绍:1.散点图:散点图是一种用于显示两个变量之间关系的图表。
通过将两个变量的取值绘制在坐标轴上,可以观察到可能的相关性。
散点图可以用于分析数据,发现可能的关联和异常点,并帮助确定合适的控制措施。
2.流程图:流程图是一种图形化表示过程的工具。
通过绘制不同步骤和决策之间的连接,可以清晰地展现整个过程的流程和逻辑。
流程图可以帮助识别可能的瓶颈和错误,并优化流程,提高效率和质量。
3.直方图:直方图是一种用于显示数据分布情况的图表。
通过将数据按照一定的范围进行分类和统计,并用条形图表示各个范围内的频率,可以直观地了解数据的分布情况和偏差。
直方图可以用于分析数据质量,检测异常数据和确定控制上限和下限。
4.控制图:控制图是一种用于监控过程稳定性和质量的统计工具。
通过绘制过程数据点的变化趋势和控制限,可以追踪过程的中心线和变异范围,及时发现和纠正异常,确保过程在可控范围内。
控制图可以用于实时监控和改进过程质量。
5.因果图:因果图是一种用于分析问题根本原因的工具。
通过将问题细分为各个因素,并挖掘这些因素之间的因果关系,可以找到问题的本质原因。
因果图可以帮助识别和解决问题的潜在因素,指导改进措施的制定。
6. Pareto 分析:Pareto 分析是一种按重要性排序的方法,用于确定改进工作的优先级。
通过将问题或缺陷按照发生频率或影响程度进行分类和统计,并用累积百分比曲线表示,可以快速找到重要问题并采取相应措施。
Pareto 分析可以帮助决策者集中精力解决最重要的问题,提升整体质量。
7.效果图(雷达图):效果图是一种用于比较和评估多个指标综合表现的图表。
通过将不同指标的取值绘制在雷达图上,可以直观地比较各个指标的相对优劣,并找到改进的方向和重点。
效果图可以用于综合评估产品或项目的质量表现,制定改进措施和目标。
第七章控制图 95第七章控制图一.前言:为使现场的质量状况达成目标,均须加以管理。
我们所说的“管理”作业,一般均用侦测产品的质量特性来判断“管理”作业是否正常。
而质量特性会随着时间产生显著高低的变化;那么到底高到何种程度或低至何种状态才算我们所说的异常?故设定一合理的高低界限,作为我们分析现场制程状况是否在“管理”状态,即为控制图的基本根源。
控制图是于1924年由美国品管大师修哈特(W.A.Shewhart)博士所发明。
而主要定义即是[一种以实际产品质量特性与依过去经验所研判的过程能力的控制界限比较,而以时间顺序表示出来的图形]。
二.控制图的基本特性:一般控制图纵轴均设定为产品的质量特性,而以过程变化的数据为刻度;横轴则为检测产品的群体代码或编号或年月日等,以时间别或制造先后别,依顺序点绘在图上。
在管制图上有三条笔直的横线,中间的一条为中心线(Central Line,CL),一般用蓝色的实线绘制;在上方的一条称为控制上限(Upper Control Limit,UCL);在下方的称为控制下限(Lower Control Limit,LCL)。
对上、下控制界限的绘制,则一般均用红色的虚线表现,以表示可接受的变异围;至于实际产品质量特性的点连线条则大都用黑色实线绘制。
控制状态:96 品管七大手法上控制界限(UCL) 中心线(CL)三.控制图的原理:1.质量变异的形成原因:一般在制造的过程中,无论是多么精密的设备、环境,它的质量特性一定都会有变动,绝对无法做出完全一样的产品;而引起变动的原因可分为两种:一种为偶然(机遇)原因;一种为异常(非机遇)原因。
(1)偶然(机遇)原因(Chance causes):不可避免的原因、非人为的原因、共同性原因、一般性原因,是属于控制状态的变异。
(2)异常(非机遇)原因(Assignable causes):可避免的原因、人为的原因、特殊性原因、局部性原因等,不可让其存在,必须追查原因,采取必要的行动,使过程恢复正常控制状态,否则会造成很大的损失。
旧QC七大手法●旧七大QC手法品管七大手法是常用的统计管理方法,又称为初级统计管理方法。
它主要包括控制图、因果图、相关图、排列图、统计分析表(调查表)、数据分层法、散布图等所谓的QC七工具。
一、因果分析图因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。
因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。
当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。
其形状像鱼骨,又称鱼骨图。
概念与用途:因果图是一种用于分析质量特性(结果)与可能影响质量特性的因素(原因)的一种工具。
它可用于以下几个方面:(1)改善分析。
(2)管制制程;(3)制作操作标准;(4)实施品管教育。
许多可能的原因可归纳成原因类别与子原因,画成形似鱼刺的图,所以该工具又称鱼刺图。
因特图的分类A、整理问题型鱼骨图(各要素与特性值间不存在原因关系,而是结构构成关系)B、原因型鱼骨图(鱼头在右,特性值通常以“为什么……”来写)C、对策型鱼骨图(鱼头在左,特性值通常以“如何提高/改善……”来写)制作鱼骨图分两个步骤:分析问题原因/结构、绘制鱼骨图。
1、分析问题原因/结构。
A、针对问题点,选择层别方法(如人机料法环等)。
B、按头脑风暴分别对各层别类别找出所有可能原因(因素)。
C、将找出的各要素进行归类、整理,明确其从属关系。
D、分析选取重要因素。
E、检查各要素的描述方法,确保语法简明、意思明确。
分析要点:a、确定大要因(大骨)时,现场作业一般从“人机料法环”着手,管理类问题一般从“人事时地物”层别,应视具体情况决定;b、大要因必须用中性词描述(不说明好坏),中、小要因必须使用价值判断(如…不良);c、脑力激荡时,应尽可能多而全地找出所有可能原因,而不仅限于自己能完全掌控或正在执行的内容。
控制图1、概念控制图又叫做管制图,是用于分析和判断工序是否处于稳定状态所使用的带有控制界限的一种工序管理图。
控制图是一种对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图,图上有中心线(CL )、上控制线(UCL )、下控制线(LCL ),并有按时间顺序抽取的样本计量值的描点序列。
控制图主要用于:过程分析及过程控制。
图1表示了控制图的基本形状:2、原理控制图的作图原理被称为“3σ原理",或“千分之三法则”。
根据统计学可以知晓,如果过程受控,数据的分布将呈钟形正态分布,位于“μ±3σ"区域间的数据占据了总数据的99。
73%,位于此区域之外的数据占据总数据的0.27%(约千分之三,上、下界限外各占0.135%),因此,在正常生产过程中,出现不良品的概率只有千分之三,所以我们一般将它忽略不计(认为不可能发生),如果一旦发生,就意味着出现了异常波动。
μ:中心线,记为CL ,用实线表示; μ+3σ:上界线,记为UCL ,用虚线表示; μ-3σ:下界线,记为LCL ,用虚线表示。
3、控制图的种类①、计量值控制图:控制图所依据的数据均属于由量具实际测量而得。
A 、平均值与全距(或极差)控制图( R Chart ); B S Chart );C Chart );D 、单值控制图(X Chart );②、计数值控制图:控制图所依据的数据均属于以计数值(如:不良品率、不良数、缺点数、件数等)。
A 、不良率控制图(P Chart); B 、不良数控制图(Pn Chart );质 量 特 性 数 据C、缺点数控制图(C Chart);D、单位缺点数控制图(U Chart)。
4、控制图的用途根据控制图在实际生产过程中的运用,可以将其分为分析用控制图、控制用控制图:①、分析用控制图(先有数据,后有控制界限):用于制程品质分析用,如:决定方针、制程解析、制程能力研究、制程管制之准备。
QC七大手法之控制图:如何用数据来监控过程?一、介绍控制图的概念及作用控制图是一种基于数据分析的工具,能够帮助企业对生产过程的稳定性、可重复性进行监控和改进。
控制图是通过将一组数据的变化趋势可视化呈现,让人们能够更容易地理解和识别数据中的规律和异常,从而对生产过程进行管控和优化。
控制图的作用是帮助企业通过数据的监控和改进,提高产品质量、生产效率以及客户满意度。
控制图可以监控的过程包括但不限于生产过程、质量控制过程、维修过程、服务过程等等。
二、控制图的种类及应用场景1.均值图:用于监控平均值的变化趋势,应用场景包括生产过程中指标的平均值是否稳定、客户满意度等。
2.极差图:用于监控数据的稳定性,应用场景包括同一生产过程中同一批次的数据变异是否稳定、装修工程的材料成本、购买同一品牌的电子产品价格波动等。
3.标准差图:用于监控数据的离散程度,应用场景包括生产过程中质量的稳定性、质量管控过程中产品的缺陷率等。
4.P图:用于监控不良品率,应用场景包括生产过程中不良品率的变化趋势、服务过程中的客户抱怨率等。
5.C图:用于监控缺陷数,应用场景包括生产过程中出现的缺陷数量、服务过程中的事故数量等。
6.U图:用于监控缺陷的平均数,应用场景包括质量控制过程中产品的平均缺陷数、维修过程中每次维修所需时间等。
7.NP图:用于监控不良品数量,应用场景包括生产过程中不良品的数量是否稳定、质量管控过程中维修次数等。
三、控制图的制作流程1.收集样本数据:收集过程中需要选取合适的数据来源并保证样本的代表性,收集的数据需要是连续性的。
2.计算统计量:根据所绘制的控制图种类,计算出数据的平均值、标准差等统计量。
3.建立控制线:根据数据的性质和控制图的种类,确定上限、下限等控制线。
4.绘制控制图:根据统计量和控制线通过软件进行绘制控制图。
四、控制图的解读方法1.游离点的处理方法:游离点是指偏离控制线的数据点。
当数据点数不足大于或等于25个时,游离点不应处理。
品管七大手法七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图一、检查表检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。
例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S 活动检查表、工程异常分析表等。
1、组成要素①确定检查的项目;②确定检查的频度;③确定检查的人员。
2、实施步骤①确定检查对象;②制定检查表;③依检查表项目进行检查并记录;④对检查出的问题要求责任单位及时改善;⑤检查人员在规定的时间内对改善效果进行确认;⑥定期总结,持续改进。
二、层别法层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别。
层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用。
例如:抽样统计表、不良类别统计表、排行榜等。
实施步骤:①确定研究的主题;②制作表格并收集数据;③将收集的数据进行层别;④比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。
三、柏拉图柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。
它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。
1、分类1)分析现象用柏拉图:与不良结果有关,用来发现主要问题。
A品质:不合格、故障、顾客抱怨、退货、维修等;B成本:损失总数、费用等;C交货期:存货短缺、付款违约、交货期拖延等;D安全:发生事故、出现差错等。
2)分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A操作者:班次、组别、年龄、经验、熟练情况等;B机器:设备、工具、模具、仪器等;C原材料:制造商、工厂、批次、种类等;D作业方法:作业环境、工序先后、作业安排等。
2、柏拉图的作用①降低不良的依据;②决定改善目标,找出问题点;③可以确认改善的效果。
新QC七大手法(工具)完整版“七大手法”主要是指企业质量管理中常用的质量管理工具,老七种手法,包括分层法、调查表、排列法、因果图、直方图、控制图和相关图。
那么新的Q C七种工具有哪些呢?那就是系统图、关联图、亲和图、矩阵图、箭条图、PD PC法以及矩阵数据分析法。
今天,我们一起来了解一下。
1.KJ法(亲和图法)(Affinity Diagram)。
2.关联图法(Rolation Diagram)。
3.系统图法(Systematization Diagram)。
4.矩阵图法(Matrix Diagram)。
5.过程决策计划图法(Process Dicesion program Chart)。
6.箭条图法(Arrow Diagram)。
7.矩阵数据分析法(Factor Analysis)。
新QC七大手法的使用情形,可归纳如下:亲和图——从杂乱的语言数据中汲取信息。
关联图——理清复杂因素间的关系。
系统图——系统地寻求实现目标的手段。
矩阵图——多角度考察存在的问题,变量关系。
PDPC法——预测设计中可能出现的障碍和结果。
箭条图——合理制定进度计划。
矩阵数据解析法—多变量转化少变量数据分析。
新QC七大手法概述:新QC七大手法的特点:1.整理语言资料的工具。
2.将语言情报用图形表示的方法。
3.引发思考,有效解决凌乱问题。
4.充实计划。
5.防止遗漏、疏忽。
6.使有关人员了解。
7.促使有关人员的协助。
8.确实表达过程。
9.管理工具,可以应用于QC以外的领域。
新QC七大手法的五项益处:1.迅速掌握重点——实时掌握问题重心,不似无头苍蝇般地找不到重点。
2.学习重视企划——有效解析问题,透过手法的运用,寻求解决之道。
3.重视解决过程——重视问题解决的过程,不只是要求成果。
4.了解重点目标——拥有正确的方向,不会顾此失彼。
5.全员系统导向——强化全员参与的重要性,进而产生参与感与认同感。
新旧QC七大手法的区别:新七大手法并不能取代旧七大手法,两种品管手法相辅相成。
品管七大手法七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图五、散布图将因果关系所对应变化的数据分别描绘在X—Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
1、分类1)正相关:当变量X增大时,另一个变量Y也增大;2)负相关:当变量X增大时,另一个变量Y却减小;3)不相关:变量X(或Y)变化时,另一个变量并不改变;4)曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小.2、实施步骤1)确定要调查的两个变量,收集相关的最新数据,至少30组以上;2)找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;3)将相应的两个变量,以点的形式标上坐标系;4)计入图名、制作者、制作时间等项目;5)判读散布图的相关性与相关程度。
3、应用要点及注意事项1)两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;2)通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;3)由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;4)当有异常点出现时,应立即查找原因,而不能把异常点删除;5)当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
七、控制图1、控制图法的涵义影响产品质量的因素很多,有静态因素也有动态因素,有没有一种方法能够即时监控产品的生产过程、及时发现质量隐患,以便改善生产过程,减少废品和次品的产出?控制图法就是这样一种以预防为主的质量控制方法,它利用现场收集到的质量特征值,绘制成控制图,通过观察图形来判断产品的生产过程的质量状况。
控制图可以提供很多有用的信息,是质量管理的重要方法之一。
控制图又叫管理图,它是一种带控制界限的质量管理图表.运用控制图的目的之一就是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发生了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳定状态。
品管七大手法
七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图
五、散布图
将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
1、分类
1)正相关:当变量X增大时,另一个变量Y也增大;
2)负相关:当变量X增大时,另一个变量Y却减小;
3)不相关:变量X(或Y)变化时,另一个变量并不改变;
4)曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。
2、实施步骤
1)确定要调查的两个变量,收集相关的最新数据,至少30组以上;
2)找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
3)将相应的两个变量,以点的形式标上坐标系;
4)计入图名、制作者、制作时间等项目;
5)判读散布图的相关性与相关程度。
3、应用要点及注意事项
1)两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
2)通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
3)由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
4)当有异常点出现时,应立即查找原因,而不能把异常点删除;
5)当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
七、控制图
1、控制图法的涵义
影响产品质量的因素很多,有静态因素也有动态因素,有没有一种方法能够即时监控产品的生产过程、及时发现质量隐患,以便改善生产过程,减少废品和次品的产出?控制图法就是这样一种以预防为主的质量控制方法,它利用现场收集到的质量特征值,绘制成控制图,通过观察图形来判断产品的生产过程的质量状况。
控制图可以提供很多有用的信息,是质量管理的重要方法之一。
控制图又叫管理图,它是一种带控制界限的质量管理图表。
运用控制图的目的之一就是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发生了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳定状态。
也可以应用控制图来使生产过程达到统计控制的状态。
产品质量特性值的分布是一种统计分布.因此,绘制控制图需要应用概率论的相关理论和知识。
控制图是对生产过程质量的一种记录图形,图上有中心线和上下控制限,并有反映按时间顺序抽取的各样本统计量的数值点。
中心线是所控制的统计量的平均值,上下控制界限与中心线相距数倍标准差。
多数的制造业应用三倍标准差控制界限,如果有充分的证据也可以使用其它控制界限。
常用的控制图有计量值和记数值两大类,它们分别适用于不同的生产过程;每类又可细分为具体的控制图,如计量值控制图可具体分为均值——极差控制图、单值一移动极差控制图等。
2、控制图的绘制
控制图的基本式样如图所示,制作控制图一般要经过以下几个步骤:
①按规定的抽样间隔和样本大小抽取样本;
②测量样本的质量特性值,计算其统计量数值;
③在控制图上描点;
④判断生产过程是否有并行。
控制图为管理者提供了许多有用的生产过程信息时应注意以下几个问题:
①根据工序的质量情况,合理地选择管理点。
管理点一般是指关键部位、关健尺寸、工艺本身有特殊要求、对下工存有影响的关键点,如可以选质量不稳定、出现不良品较多的部位为管理点;
②根据管理点上的质量问题,合理选择控制图的种类:
③使用控制图做工序管理时,应首先确定合理的控制界限:
④控制图上的点有异常状态,应立即找出原因,采取措施后再进行生产,这是控制图发挥作用的首要前提;
⑤控制线不等于公差线,公差线是用来判断产品是否合格的,而控制线是用来判断工序质量是否发生变化的;
⑥控制图发生异常,要明确责任,及时解决或上报。
制作控制图时并不是每一次都计算控制界限,那么最初控制线是怎样确定的呢?如果现在的生产条件和过去的差不多,可以遵循以往的经验数据,即延用以往稳定生产的控制界限。
下面介绍一种确定控制界限的方法,即现场抽样法,其步骤如下:
①随机抽取样品50件以上,测出样品的数据,计算控制界限,做控制图;
②观察控制图是否在控制状态中,即稳定情况,如果点全部在控制界限内.而且点的排列无异常,则可以转入下一步;
③如果有异常状态,或虽未超出控制界限,但排列有异常,则需查明导致异常的原因,并采取妥善措施使之处在控制状态,然后再重新取数据计算控制界限,转入下一步;
④把上述所取数据作立方图,将立方图和标准界限(公差上限和下限)相比较,看是否在理想状态和较理想状态,如果达不到要求,就必须采取措施,使平均位移动或标准偏差减少,采取措施以后再重复上述步骤重新取数据,做控制界限,直到满足标准为止。
3、怎样利用控制图判断异常现象
用控制图识别生产过程的状态,主要是根据样本数据形成的样本点位置以及变化趋势进行分析和判断.失控状态主要表现为以下两种情况:①样本点超出控制界限;②样本点在控制界限内,但排列异常。
当数据点超越管理界限时,一般认为生产过程存在异常现象,此时就应该追究原因,并采取对策。
排列异常主要指出现以下几种情况:③连续七个以上的点全部偏离中心线上方或下方,这时应查看生产条件是否出现了变化。
④连续三个点中的两个点进入管理界限的附近区域(指从中心线开始到管理界限的三分之二以上的区域),这时应注意生产的波动度是否过大。
⑤点相继出现向上或向下的趋势,表明工序特性在向上或向下发生着
变化。
⑥点的排列状态呈周期性变化,这时可对作业时间进行层次处理,重新制作控制图,以便找出问题的原因。
控制图对异常现象的揭示能力,将根据数据分组时各组数据的多少、样本的收集方法、层别的划分不同而不同。
不应仅仅满足于对一份控制图的使用,而应变换各种各样的数据收取方法和使用方法,制作出各种类型的图表,这样才能收到更好的效果。
值得注意的是,如果发现了超越管理界限的异常现象,却不去努力追究原因,采取对策,那么尽管控制图的效用很好.也只不过是空纸一张。