2022新教材高中数学课时检测22简单幂函数的图象和性质含解析北师大版必修第一册
- 格式:doc
- 大小:88.00 KB
- 文档页数:4
4.2 简单幂函数的图象和性质A级必备知识基础练1.函数y=3xα-2的图象过定点()A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)2.在下列幂函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.f(x)=x-1B.f(x)=x-2C.f(x)=x3D.f(x)=x 1 23.(多选题)下列说法错误的是()A.幂函数的图象不经过第四象限B.y=x0的图象是一条直线C.若函数y=1x 的定义域为{x|x>2},则它的值域为y y<12D.若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2}4.当x∈(1,+∞)时,函数y=xα的图象恒在直线y=x的下方,则α的取值范围是()A.(0,1)B.(-∞,0)C.(-∞,1)D.(1,+∞)5.幂函数y=x m与y=x n在第一象限内的图象如图所示,则()A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>16.若(a+1)13<(3-2a)13,则a的取值范围是.7.已知幂函数f(x)=x m2-2m-3(m∈Z)的图象关于y轴对称,并且f(x)在第一象限内是单调递减函数,则m= .8.已知函数y=(a2-3a+2)x a2-5a+5(a为常数).(1)当a为何值时,此函数为幂函数?(2)当a为何值时,此函数为正比例函数?(3)当a为何值时,此函数为反比例函数?B 级关键能力提升练9.(多选题)已知函数f (x )=x α的图象经过点(4,2),则下列结论正确的有( ) A.函数f (x )为增函数 B.函数f (x )为偶函数 C.若x>1,则f (x )>1 D.若0<x 1<x 2,则f(x 1)+f(x 2)2<fx 1+x 2210.已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值( )A.恒大于0B.恒小于0C.等于0D.无法判断11.已知幂函数f (x )=mx n的图象过点(√2,2√2),设a=f (m ),b=f (n ),c=f (-2),则( ) A.c<b<a B.c<a<b C.b<c<aD.a<b<c12.(多选题)已知实数a ,b 满足等式a 12=b 13,则下列关系式可能成立的是( ) A.0<b<a<1 B.-1<a<b<0 C.1<a<bD.a=b13.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x-k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.14.已知幂函数f(x)=(2m2-6m+5)x m+1为偶函数.(1)求函数f(x)的解析式;(2)若函数y=f(x)-2(a-1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.C级学科素养创新练15.已知幂函数f(x)=x(2-k)(1+k),k∈Z,且f(x)在区间(0,+∞)上单调递增.(1)求实数k的值,并写出相应的函数f(x)的解析式.(2)若函数F(x)=2f(x)-4x+3在区间[2a,a+1]上不单调,求实数a的取值范围.],若存在, (3)试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,178求出q的值;若不存在,请说明理由.4.2 简单幂函数的图象和性质1.A2.C3.BCD 对于A,由幂函数的图象知,它不经过第四象限,所以A 对;对于B,因为当x=0时,x 0无意义,即在x=0无定义,所以B 错;对于C,函数y=1x 的定义域为{x|x>2},则它的值域为y 0<y<12,不是y y<12,所以C 错;对于D,定义域不一定是{x|-2≤x ≤2},如{x|0≤x ≤2},所以D 错.故选BCD .4.C 由幂函数的图象特征知α<1.5.B 由于y=x m在区间(0,+∞)上单调递增,且为上凸函数,故0<m<1.由于y=x n在区间(0,+∞)上单调递减,且在直线x=1的右侧时,y=x n的图象在y=x -1的图象的下方,故n<-1.故选B . 6.(-∞,23) 因为函数f (x )=x 13的定义域为R ,且为增函数,所以a+1<3-2a ,解得a<23. 7.1 因为幂函数f (x )=x m2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m-3为偶数.又因为f (x )在第一象限内单调递减,所以m 2-2m-3<0,即-1<m<3,又m ∈Z ,所以m=1. 8.解(1)由题意知a 2-3a+2=1,即a 2-3a+1=0, 解得a=3±√52. (2)由题意知{a 2-5a +5=1,a 2-3a +2≠0,解得a=4.(3)由题意知{a 2-5a +5=-1,a 2-3a +2≠0,解得a=3.9.ACD 因为函数f (x )=x α的图象经过点(4,2), 所以α=12.所以f (x )=x 12.显然f (x )在定义域[0,+∞)上为增函数,所以A 正确;f (x )的定义域为[0,+∞),所以f (x )不具有奇偶性,所以B 不正确;当x>1时,√x >1,即f (x )>1,所以C 正确; 当0<x 1<x 2时,f(x 1)+f(x 2)22-[f(x 1+x 22)]2=√x 1+√x 222-(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2-x 1-x 24=-(√x 1-√x 2)24<0. 即f(x 1)+f(x 2)2<fx 1+x 22成立,所以D 正确.10.A 由已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,函数f (x )单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.B 幂函数f (x )=mx n的图象过点(√2,2√2),则{m =1,(√2)n =2√2⇒{m =1,n =3,所以幂函数的解析式为f (x )=x 3,且函数f (x )单调递增.又-2<1<3,所以f (-2)<f (1)<f (3),即c<a<b ,故选B .12.ACD 画出函数y=x 12与y=x 13的图象如图所示,设a 12=b 13=m ,作直线y=m. 从图象知,若m=0或m=1,则a=b ; 若0<m<1,则0<b<a<1; 若m>1,则1<a<b. 故其中可能成立的是ACD .13.解(1)依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].14.解(1)由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2是偶函数,符合题意;当m=2时,f (x )=x 3为奇函数,不符合题意,舍去. 故f (x )=x 2.(2)由(1)可知y=x 2-2(a-1)x+1, 函数y 的对称轴为直线x=a-1,由题意知函数y 在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,解得a ≤3或a ≥4. ∴a 的取值范围为(-∞,3]∪[4,+∞). 15.解(1)由题意知(2-k )(1+k )>0,解得-1<k<2. 又k ∈Z ,∴k=0或k=1,分别代入原函数,得f (x )=x 2.(2)由已知得F (x )=2x 2-4x+3,对称轴为直线x=1.要使函数F (x )在区间[2a ,a+1]上不单调,则2a<1<a+1,则0<a<12.即实数a 的取值范围是(0,12).(3)由已知,g (x )=-qx 2+(2q-1)x+1. 假设存在这样的正数q 符合题意,则函数g (x )的图象是开口向下的抛物线,其对称轴为直线x=2q -12q=1-12q <1,因而,函数g (x )在区间[-1,2]上的最小值只能在x=-1或x=2处取得, 又g (2)=-1≠-4,从而g (-1)=2-3q=-4,解得q=2.此时,g (x )=-2x 2+3x+1,其图象的对称轴为直线x=34∈[-1,2],∴g (x )在区间[-1,2]上的最大值为g (34)=-2×(34)2+3×34+1=178,符合题意. ∴存在q=2,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为[-4,178].。
3.3 幂函数新课标要求通过具体实例,结合231,,,,y x y y x y x y x x=====的图象,理解它们的变化规律,了解幂函数。
知识梳理一、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 二、五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1 定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ≠0} 奇偶性 奇 偶奇 非奇非偶 奇单调性 增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞)上减, 在(-∞,0)上减三、一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.名师导学知识点1 幂函数的概念幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式. 【例1-1】在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3 答案 B解析 ∵y =1x 2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数. 【例1-2】已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.【变式训练1-1】给出下列函数:①y=x 3;②y=x 2+2x ;③y=4x 2;④y=x 5+1;⑤y=(x-1)2;⑥y=x ;⑦y=x -2.其中幂函数的个数为 ( ) A .1 B .2 C .3D .4C [解析] 由幂函数的定义知,只有①⑥⑦是幂函数,故选C .【变式训练1-2】已知幂函数y=(m 2-m-1),求此幂函数的解析式,并指出其定义域.解:∵y=(m 2-m-1)为幂函数,∴m 2-m-1=1,解得m=2或m=-1.当m=2时,m 2-2m-3=-3,则y=x -3(x ≠0);当m=-1时,m 2-2m-3=0,则y=x 0(x ≠0).故所求幂函数的解析式为y=x -3(x ≠0)或y=x 0(x ≠0).知识点2 幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.(2)解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.【例2-1】若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2. 在同一坐标系中作出函数f (x )=x 2和g (x )=x-2的图象(如图所示),观察图象可得,(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).【变式训练2-1】如图所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12;当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2.知识点3 幂函数的性质比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”. 【例2-1】[2021·安徽亳州二中高一期中] 已知函数f (x )=(m 2-m-1)是幂函数,且在(0,+∞)上单调递减,则实数m= ( )A .2B .-1C .4D .2或-1A 【解析】因为f (x )为幂函数,所以m 2-m-1=1,解得m=2或m=-1.因为f (x )在(0,+∞)上单调递减,所以m 2-2m-2<0,所以m=2.故选A .【例2-2】比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.5与⎝⎛⎭⎫130.5; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)3432⎛⎫⎪⎝⎭与3234⎛⎫⎪⎝⎭. 解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴⎝⎛⎭⎫250.5>⎝⎛⎭⎫130.5. (2)∵幂函数y =x-1在(-∞,0)上是单调递减的,又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵函数y 1=34x 在(0,+∞)上单调递增, 又32>1,∴3432⎛⎫⎪⎝⎭>341 =1. 又∵函数y 2=32x 在(0,+∞)上单调递增,且34<1,∴3234⎛⎫⎪⎝⎭<321 =1,∴3432⎛⎫ ⎪⎝⎭>3234⎛⎫⎪⎝⎭. 【变式训练2-1】比较下列各组数的大小: (1)⎝⎛⎭⎫230.3与⎝⎛⎭⎫130.3;(2)-3.143与-π3.解 (1)∵y =x 0.3在[0,+∞)上单调递增且23>13,∴⎝⎛⎭⎫230.3>⎝⎛⎭⎫130.3.(2)∵y =x 3是R 上的增函数,且3.14<π, ∴3.143<π3,∴-3.143>-π3.【变式训练2-2】已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足()31ma -+ <()332m a -- 的a 的取值范围.解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为()131a -+<()1332a --.因为y =13x- 在(-∞,0),(0,+∞)上均单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32.名师导练A 组-[应知应会]1.已知点,在幂函数y=f (x )的图像上,则 ( ) A .f (x )= B .f (x )=x 3 C .f (x )=x -2D .f (x )=xB [解析] 设f (x )=x a ,由题意知a==3,所以a=3,所以f (x )=x 3.故选B .2.(2021秋•三明期末)已知幂函数21()m f x x -=的图象经过点(2,8),则实数m 的值是() A .1-B .12C .2D .3【分析】把点的坐标代入幂函数解析式,即可求出m 的值. 【解答】解:幂函数21()m f x x -=的图象经过点(2,8), 2128m -∴=,2m ∴=,故选:C .3.(2021秋•下城区校级期末)若一个幂函数的图象经过点1(2,)4,则它的单调增区间( )A .(,1)-∞B .(0,)+∞C .(,0)-∞D .R【分析】先求出幂函数的解析式,再得出其单调增区间. 【解答】解:设幂函数()f x x α=,函数()f x 经过点1(2,)4,∴124α=,解得2α=-, ∴221()f x x x -==, 故它的单调递增区间为(,0)-∞. 故选:C .4.(2021秋•杨浦区校级期末)已知常数a Q ∈,如图为幂函数a y x =的图象,则a 的值可以为( )A .23B .32 C .23-D .32-【分析】根据幂函数的图象关于y 轴对称,且在第一象限内单调递减,可以得出C 选项正确. 【解答】解:根据幂函数a y x =的图象关于y 轴对称,函数是偶函数,排除B 、D 选项; 再根据幂函数a y x =的图象在第一象限内从左到右下降,是单调减函数, 所以0a <,排除A ,即C 选项正确. 故选:C .5.已知幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,则实数m 的值为 ( )A .-1B .3C .-1或3D .1或-3B [解析] 因为幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,所以m 2-2m-2=1且m 2+m-1>0,解得m=3,则实数m 的值为3.6.(2021秋•白山期末)若函数21()(22)m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则f (2)(= ) A .14B .12C .2D .4【分析】根据幂函数的定义,令2221m m --=,求出m 的值,再判断m 是否满足幂函数在(0,)x ∈+∞上为增函数即可,确定m 的值,从而求出幂函数的解析式,得出结果.【解答】解:因为函数21()(22)m f x m m x -=--是幂函数, 所以2221m m --=,解得1m =-或3m =.又因为()y f x =在(0,)+∞上单调递增,所以10m -, 所以3m =,2()f x x =, 从而f (2)224==, 故选:D .7.(2020秋•河南月考)幂函数223()mm y x m Z +-=∈的图象如图所示,则m 的值为( )A .2-或0B .1-C .0D .2-【分析】依题意,2m =-或1-或0,结合函数为奇函数,依次验证即可得到答案.【解答】解:由幂函数在第一象限的单调性可得,2230m m +-<,解得31m -<<, 再由m Z ∈可得,2m =-或1-或0. 又从图象可知该函数是奇函数,若2m =-,则2233m m +-=-,符合题意; 若1m =-,则2234m m +-=-,不合题意; 若0m =,则2233m m +-=-,符合题意, 综上,2m =-或0. 故选:A .8.(2022春•沈河区校级月考)设113244342(),(),()433a b c ===,则a ,b ,c 的大小顺序是( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:112439()()1416a ==<,144()13b =>,314428()()1327c ==<;且89012716<<<,函数14y x =在(0,)+∞上是单调增函数,所以114489()()2716<,所以c a <; 综上知,c a b <<. 故选:A .9.(多选题)已知幂函数f (x )= (m ,n ∈N *,m ,n 互质),则下列关于f (x )的结论正确的是( )A .当m ,n 是奇数时,幂函数f (x )是奇函数B .当m 是偶数,n 是奇数时,幂函数f (x )是偶函数C .当0<<1时,幂函数f (x )在(0,+∞)上单调递减D .当m ,n 是奇数时,幂函数f (x )的定义域为R ABD [解析] f (x )==.当m ,n 是奇数时,幂函数f (x )是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数时,幂函数f (x )是偶函数,故B 中的结论正确;当0<<1时,幂函数f (x )在(0,+∞)上单调递增,故C 中的结论错误;当m ,n 是奇数时,幂函数f (x )=的定义域为R,故D 中的结论正确.故选ABD .10.(多选)(2021秋•徐州期末)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【分析】根据幂函数的图象与性质,判断选项中的命题是否正确即可.【解答】解:对于A ,1α=-时幂函数1y x -=在(,0)-∞和(0,)+∞是减函数,在其定义域上不是减函数,A 错误;对于B ,0α=时幂函数01(0)y x x ==≠,其图象是一条直线,去掉点(0,1),B 错误; 对于C ,2α=时幂函数2y x =在定义域R 上是偶函数,C 正确;对于D ,3α=时幂函数3y x =在R 上的奇函数,且是增函数,有唯一零点是0,D 正确. 故选:CD .11.(2019秋•金山区校级期末)幂函数()y f x =的图象经过点1(4,)2,则1()16f 的值为 .【分析】利用待定系数法求出幂函数()y f x =的解析式,再计算1()16f 的值.【解答】解:设幂函数()y f x x α==,R α∈;其图象过点1(4,)2,所以142α=,解得12α=-;所以12()f x x -=,所以112211()()1641616f -===.故答案为:4.12.[2021·厦门外国语学校高一期中] 已知幂函数f (x )=(m 2-5m+7)x m-1为偶函数,则实数m 的值为 .3 [解析] ∵f (x )为幂函数,∴m 2-5m+7=1,解得m=2或m=3.当m=2时,f (x )=x 为奇函数,不满足题意;当m=3时,f (x )=x 2为偶函数,满足题意.综上所述,m=3.13.(2021秋•湖州期末)幂函数()()f x x R αα=∈的图象经过点(2,8),则α的值为 ;函数()f x 为 函数.(填“奇”或“偶” )【分析】先求出幂函数解析式,再判断奇偶性即可. 【解答】解:幂函数()()f x x R αα=∈的图象经过点(2,8), 28α∴=,3α∴=,3()f x x ∴=,定义域为R ,又33()()()f x x x f x -=-=-=-,()f x ∴是奇函数,故答案为:3,奇.14.(2020春•嘉陵区月考)若幂函数22(22)m y m m x -=--在(0,)x ∈+∞上为减函数,则实数m 的值是【分析】根据给出的函数为幂函数,由幂函数概念知2221m m --=,再根据函数在(0,)+∞上为减函数,得到幂指数应该小于0,求得的m 值应满足以上两条.【解答】解:因为函数22(22)m y m m x -=--既是幂函数又是(0,)+∞的减函数, 所以222120m m m ⎧--=⎨-<⎩⇒312m m m ==-⎧⎨<⎩或,解得:1m =-. 故答案为:1-.15.(2021秋•道里区校级月考)当01x <<时, 1.1()f x x =,0.9()g x x =,2()h x x -=的大小关系是 .【分析】画出这三个函数在区间(0,1)上的图象可得答案. 【解答】解:画出幂函数的图象如下图可知()()()f x g x h x <<故答案为()()()f x g x h x <<16.(2021•西湖区校级模拟)已知函数223()(2,)n n f x x n k k N -++==∈的图象在[0,)+∞上单调递增则n = ,f (2)= .【分析】根据幂函数的单调性,列出不等式求出n 的值,写出()f x 的解析式,再计算f (2)的值.【解答】解:函数223()n n f x x -++=的图象在[0,)+∞上单调递增,所以2230n n -++>, 即2230n n --<,解得13n -<<;又2n k =,且k N ∈,所以0n =,2,当0n =时,3()f x x =;当0n =时,3()f x x =;所以f (2)328==.故答案为:0,2;8.17.[2021·浙江宁波高一期中] 已知幂函数f (x )的图像过点P 8,.(1)求函数f (x )的解析式;(2)画出函数f (x )的图像,并指出其单调区间.解:(1)设f (x )=x α. ∵f (x )的图像过点P 8,,∴8α=,即23α=2-1,解得α=-,故函数f (x )的解析式为f (x )=(x ≠0). (2)作出函数f (x )的图像如图所示.由图可知,函数f (x )的单调递减区间为(-∞,0),(0,+∞),无单调递增区间.18.[2021·广州六中高一期中] 已知幂函数f (x )的图像过点(2,).(1)求出函数f (x )的解析式,判断并证明f (x )在[0,+∞)上的单调性;(2)若函数g (x )是R 上的偶函数,当x ≥0时,g (x )=f (x ),求满足g (1-m )≤的实数m 的取值范围. 解:(1)设f (x )=x α,将点(2,)的坐标代入,得=2α,解得α=, 所以f (x )=.幂函数f (x )==在[0,+∞)上单调递增.证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=-==, 因为x 1-x 2<0,+>0,所以f (x 1)<f (x 2), 故幂函数f (x )=在[0,+∞)上单调递增.(2)当x ≥0时,g (x )=f (x ),而幂函数f (x )=在[0,+∞)上单调递增, 所以当x ≥0时,g (x )单调递增.因为函数g (x )是R 上的偶函数,所以g (x )在(-∞,0)上单调递减. 由g (5)=,g (1-m )≤可得|1-m|≤5,解得-4≤m ≤6,所以满足g (1-m )≤的实数m 的取值范围为[-4,6]. B 组-[素养提升]1.已知幂函数y =223m m x-- (m ∈Z )的图象与x 轴和y 轴没有交点,且关于y 轴对称,则m 等于( )A .1B .0,2C .-1,1,3D .0,1,2答案 C解析 ∵幂函数y =223m m x -- (m ∈Z )的图象与x 轴、y 轴没有交点,且关于y 轴对称, ∴m 2-2m -3≤0,且m 2-2m -3(m ∈Z )为偶数,由m 2-2m -3≤0,得-1≤m ≤3,又m ∈Z ,∴m =-1,0,1,2,3.当m =-1时,m 2-2m -3=1+2-3=0,为偶数,符合题意;当m =0时,m 2-2m -3=-3,为奇数,不符合题意;当m =1时,m 2-2m -3=1-2-3=-4,为偶数,符合题意;当m =2时,m 2-2m -3=4-4-3=-3,为奇数,不符合题意;当m =3时,m 2-2m -3=9-6-3=0,为偶数,符合题意.综上所述,m =-1,1,3.2.(2022春•凯里市校级期中)已知一次函数()f x 的图象过点(0,1)-和(2,1),()(1)m g x m x =-为幂函数.(Ⅰ)求函数()f x 与()g x 的解析式;(Ⅱ)当a R ∈时,解关于x 的不等式:()()af x g x <.【分析】(1)利用待定系数法求出解析式即可;(2)分0a <或4a >,0a =,4a =,04a <<四种情况讨论即可.【解答】解:()I 根据一次函数()f x 的图象过点(0,1)-和(2,1),设()f x kx b =+,则112b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,则()1f x x =- ()(1)m g x m x =-为幂函数,则2m =,故2()g x x =()()()II af x g x <即2(1)a x x -<,则△24(4)a a a a =-=-当0a <或4a >时,不等式的解集为24{|}a a a x x --或24{|}a a a x x +->, 当0a =时,不等式的解集为{|0}x x ≠;当4a =时,不等式的解集为{|2}x x ≠当04a <<时,不等式的解集为R .。
§5简单的幂函数知识点一幂函数性质与图像[填一填]1.幂函数如果一个函数,底数是自变量x,指数是常数α,即y=xα,这样的函数称为幂函数.2.幂函数性质与图像所有的幂函数在(0,+∞)上有定义,并且图像都过点(1,1),如果α>0,则幂函数的图像还过(0,0),并在区间[0,+∞)上递增;如果α<0,则幂函数在区间(0,+∞)上递减,在第一象限内,当x从右边趋向于原点时,图像与y轴无限接近;当x趋向于+∞时,图像与x轴无限接近.[答一答]1.幂函数y=xα的图像在第一象限内有何特征?提示:幂函数y=xα的图像在第一象限内具有如下特征:直线x=1,y=1,y=x将直角坐标平面在第一象限的直线x=1的右侧分为三个区域(Ⅰ)、(Ⅱ)、(Ⅲ)如图:则α∈(1,+∞)⇔y=xα的图像经过区域(Ⅰ) ,如y=x2;α∈(0,1)⇔y=xα的图像经过区域(Ⅱ),如y=x;α∈(-∞,0)⇔y=xα的图像经过区域(Ⅲ),如y=1x.并且在直线x=1的右侧,从x轴起,幂函数y=xα的指数α由小到大递增,即“指大图高”、“指小图低”,在直线x=1的左侧,图像从下到上,相应的指数由大变小.知识点二奇函数与偶函数[填一填]3.奇函数与偶函数(1)一般地,图像关于原点对称的函数叫作奇函数.在奇函数f(x)中,f(x)与f(-x)绝对值相等,符号相反,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数.(2)一般地,图像关于y轴对称的函数叫作偶函数.在偶函数f(x)中,f(x)与f(-x)的值相等,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)一定是偶函数.(3)当函数f(x)是奇函数或偶函数时,称函数f(x)具有奇偶性.[答一答]2.(1)若奇函数y=f(x)在x=0处有定义,则f(0)的值是否唯一确定?提示:若奇函数y=f(x)在x=0处有定义,由f(0)=-f(0)可知,f(0)=0,故f(0)的值是唯一确定的,即一定有f(0)=0.(2)偶函数在关于原点对称的区间上的单调性相反,最值相反吗?奇函数在关于原点对称的区间上的单调性相同,最值相同吗?提示:偶函数在关于原点对称的区间上的单调性相反,最值相同;奇函数在关于原点对称的区间上的单调性相同,最值不同.1.幂函数图像的分布特点和规律幂函数在第一象限内的图像,在经过点(1,1)且平行于y轴的直线的右侧,按幂指数由小到大的关系幂函数的图像从下到上的分布.2.幂函数y=xα(α∈R)的图像和性质(1)当α>0时,图像过点(1,1),(0,0)且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数.(2)当α<0时,幂函数y=xα图像的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.3.奇、偶函数图像对称性的缘由若函数f(x)是奇函数,对函数f(x)图像上任一点M(x,f(x)),则点M关于原点的对称点为M′(-x,-f(x)).又f(-x)=-f(x),则有M′(-x,f(-x)),所以点M′也在函数f(x)的图像上,所以奇函数的图像关于原点对称.同理可证偶函数的图像关于y轴对称.4.奇、偶函数图像的几点说明(1)一个函数为偶函数,其图像一定关于y轴对称,但是却不一定与y轴相交.(2)既是奇函数又是偶函数的函数图像在x轴上.如y=0,x∈[-1,1]既是奇函数又是偶函数.(3)从图像上看:函数的奇偶性体现的是对称性,单调性体现的是升降性.(4)根据以上奇、偶函数图像对称性的特点可以解决已知奇、偶函数在某区间的部分图像,画出其关于原点或y轴对称的另一部分的图像问题.类型一幂函数的概念【例1】已知函数y=(m2-m-5)x m+1是幂函数,求m的值,并写出函数解析式.【思路探究】幂函数的解析式形如y=xα(α∈R),幂值前面的系数为1,底数为x,α∈R为常数.【解】∵y=(m2-m-5)x m+1为幂函数,∴y可以写成y=xα(α为常数)的形式,∴m2-m-5=1,解得m=3或m=-2.当m=3时,m+1=4,此时y=x4;当m=-2时,m+1=-1,此时y=x-1.规律方法判断一个函数是否为幂函数,依据是该函数是否为y=xα(α为常数)的形式.幂函数的解析式为一个幂的形式,且满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反过来,若一个函数为幂函数,则该函数也必具有上述形式,这是我们解决某些问题的一个隐含条件.(1)以下四个函数:y =x 0;y =x -2;y =(x +1)2;y =2·x 13 中,是幂函数的有( B ) A .1个 B .2个 C .3个D .4个解析:形如y =x α(α为常数)的函数为幂函数,所以只有y =x 0,y =x -2为幂函数. (2)f (x )=(m 2-m -1)x m 2-2m -1是幂函数,则实数m =2或-1.解析:f (x )=(m 2-m -1)x m 2-2m -1是幂函数,所以m 2-m -1=1,解得m =-1或2. 类型二 幂函数的性质【例2】 幂函数y =x α中α的取值集合C 是{-1,0,12,1,2,3}的子集,当幂函数的值域与定义域相同时,集合C 为( )A .{-1,0,12}B .{12,1,2}C .{-1,12,1,3}D .{12,1,2,3}【思路探究】 根据常见的幂函数的图像与性质进行逐一判断.【解析】 根据幂函数y =x -1,y =x 0,y =x 12,y =x ,y =x 2,y =x 3的图像和解析式可知,当α=-1,12,1,3时,相应幂函数的值域与定义域相同.【答案】 C规律方法 1.画幂函数的图像时,可先画出其在第一象限内的图像,再由定义域、单调性、奇偶性得出在其他象限内的图像.2.幂函数图像的特征:(1)在第一象限内,直线x =1的右侧,y =x α的图像由上到下,指数α由大变小;在第一象限内,直线x =1的左侧,y =x α的图像由上到下,指数α由小变大.(2)当α>0时,幂函数的图像都经过(0,0)和(1,1)点,在第一象限内,当0<α≤1时,曲线上凸;当α≥1时,曲线下凸;当α<0时,幂函数的图像都经过(1,1)点,在第一象限内,曲线下凸.如图,图中曲线是幂函数y =x α在第一象限的大致图像.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( B )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:解法1:在第一象限内,在直线x =1的右侧,y =x α的图像由上到下,指数α由大变小,故选B.解法2:赋值法.令x =4,则4-2=116,4-12=12,412=2,42=16,易知选B.类型三 幂函数性质的应用【思路探究】 注意分情况讨论要做到不重不漏.先根据条件确定m 的值,再利用幂函数的增减性求实数a 的取值范围.【解】 因为函数在(0,+∞)上递减, 所以m 2-2m -3<0,解得-1<m <3. 又因为m ∈N +,所以m =1或2,由函数图像关于y 轴对称知,m 2-2m -3为偶数,所以m =1.把m =1代入不等式得(a +1)- 13<(3-2a )- 13.因为y =x - 13在(-∞,0)和(0,+∞)上均递减,所以有a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.即a 的取值范围是(-∞,-1)∪(23,32).规律方法 作直线x =m (m >1),它与若干个幂函数的图像相交,交点从上到下的排列顺序正是幂指数的降序排列,故可利用其比较指数α的大小.(1)已知(0.71.3)m <(1.30.7)m ,则m 的取值范围是m >0.解析:根据幂函数y =x 1.3的图像,当0<x <1时,0<y <1,所以0<0.71.3<1,又根据幂函数y =x 0.7的图像,当x >1时y >1,所以1.30.7>1,于是有0.71.3<1.30.7,又(0.71.3)m <(1.30.7)m ,所以m >0. (2)已知幂函数y =f (x )的图像过点(2,22),试求出此函数的解析式,并作出图像,判断奇偶性、单调性.解:设幂函数解析式为y =x α,将点(2,22)的坐标代入,得2α=22,解得α=-12,所以函数的解析式y =x - 12.定义域为(0,+∞),它不关于原点对称,所以,y =f (x )是非奇非偶函数.当x >0时,f (x )是单调减函数,函数的图像如图.下面用定义证明y =x - 12 =1x 在(0,+∞)上为减函数:设x 1,x 2∈(0,+∞),且x 1<x 2,则Δx =x 2-x 1>0, Δy =y 2-y 1=1x 2-1x 1=x 1-x 2x 1x 2=(x 1-x 2)x 1x 2(x 1+x 2)=-Δxx 1x 2(x 1+x 2)<0,所以y =x - 12 =1x 在(0,+∞)上为减函数.类型四 函数奇偶性的判断 【例4】 判断下列函数的奇偶性. (1)f (x )=x 4+3x 2; (2)f (x )=x -1x ;(3)f (x )=0,x ∈(-1,1]; (4)f (x )=-2x +1.【思路探究】 先确定函数的定义域是否关于原点对称,再看f (-x )与f (x )之间的关系. 【解】 (1)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=(-x )4+3(-x )2=x 4+3x 2=f (x ), ∴函数f (x )为偶函数.(2)函数f (x )的定义域为{x |x ≠0},关于原点对称. ∵f (-x )=-x -1-x =-⎝⎛⎭⎫x -1x =-f (x ), ∴函数f (x )为奇函数.(3)函数f (x )的定义域为(-1,1],不关于原点对称,故函数f (x )既不是奇函数也不是偶函数. (4)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=-2(-x )+1=2x +1≠±f (x ), ∴函数f (x )既不是奇函数也不是偶函数. 规律方法 1.用定义判断函数奇偶性的步骤是:2.在客观题中,多个函数有公共定义域时也可以利用如下性质判断函数的奇偶性: (1)偶函数的和、差、积、商(分母不为零)仍为偶函数; (2)奇函数的和、差仍为奇函数;(3)两个奇函数的积为偶函数,两个奇函数的商(分母不为零)也为偶函数; (4)一个奇函数与一个偶函数的积为奇函数.判断下列函数的奇偶性: (1)f (x )=x 3+1x 3;(2)f (x )=x - 53; (3)f (x )=x 4+1x 2+1;(4)f (x )=2-x +x -2.解:(1)函数f (x )=x 3+1x 3的定义域是(-∞,0)∪(0,+∞),关于原点对称.又∵f (-x )=-x 3+1-x 3=-⎝⎛⎭⎫x 3+1x 3=-f (x ), ∴函数f (x )=x 3+1x3是奇函数.(2)函数f (x )=x - 53的定义域是(-∞,0)∪(0,+∞),关于原点对称. 又∵f (-x )=(-x ) - 53=13(-x )5=-13x 5=-x - 53=-f (x ),∴函数f (x )=x - 53是奇函数.(3)函数f (x )=x 4+1x 2+1的定义域是R ,关于原点对称.又∵f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ),∴函数f (x )=x 4+1x 2+1是偶函数.(4)函数f (x )=2-x +x -2的定义域为{2},不关于原点对称,∴该函数既不是奇函数也不是偶函数.类型五 利用函数奇偶性求函数的解析式【例5】 若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求当x ≥0时,函数f (x )的解析式.【思路探究】 解决本题的关键是利用奇函数的关系式f (-x )=-f (x )将x <0时f (x )的解析式转化到x >0上.同时要注意f (0)=0.【解】 ∵f (x )是奇函数,∴当x >0时,f (x )=-f (-x )=-{(-x )[1-(-x )]}=x (1+x ), 当x =0时,f (0)=-f (0),即f (0)=0.∴当x ≥0时,f (x )=x (1+x ).规律方法 1.解答本题时,很容易遗漏x =0的情况,在区间转化时要细心.2.利用函数的奇偶性求解函数的解析式,主要利用函数奇偶性的定义.求解一般分以下三个步骤:(1)设所求函数解析式中所给的区间上任一个x ,即求哪个区间上的解析式,就设x 在哪个区间上.(2)把所求区间内的变量转化到已知区间内.(3)利用函数奇偶性的定义f (x )=-f (-x )或f (x )=f (-x )求解所求区间内的解析式.(1)已知f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =13,b =0.解析:因为f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],所以a -1+2a =0,a =13,所以f (-x )=f (x )恒成立.所以-bx =bx ,所以b =0. (2)函数f (x )为R 上的奇函数,且当x <0时,f (x )=x (x -1),则当x >0时,f (x )=-x (x +1).解析:当x >0时,-x <0,所以f (-x )=-x (-x -1)=x (x +1), 又因为f (x )为R 上的奇函数,所以f (-x )=-f (x ),所以-f (x )=x (x +1), 所以f (x )=-x (x +1).——易错误区—— 函数奇偶性判断中的误区【例6】 以下说法中:(1)函数f (x )=5x 2,x ∈(-3,3]是偶函数.(2)f (x )=x 3+1x 是奇函数.(3)函数f (x )=|x -2|是偶函数.(4)函数f (x )=0,x ∈[-2,2]既是奇函数,又是偶函数.正确的有( )A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4)【错解】 选B 或选D【正解】 C 对于(1),函数f (x )=5x 2,x ∈(-3,3]的定义域不关于原点对称①,故该函数是非奇非偶函数,故(1)错误.对于(2),函数f(x)=x3+1的定义域为(-∞,0)∪(0,+∞),且能满足f(-x)=-f(x),x所以是奇函数,故(2)正确.对于(3),函数f(x)=|x-2|是由f(x)=|x|的图像向右平移了两个单位得到的②,图像不关于y轴对称,所以(3)错误.对于(4),函数f(x)=0,x∈[-2,2]图像既关于原点对称又关于y轴对称,所以(4)正确,因此正确的只有(2)(4).【错因分析】 1.忽视了①处函数的定义域x∈(-3,3]不关于原点对称,出现只是根据f(-x)=f(x)而判定为偶函数的错误;2.忽视了②处函数f(x)=|x-2|的图像不关于y轴对称,出现只看到绝对值,就认为是偶函数的错误.【防范措施】 1.定义域优先的原则由奇偶函数的定义,“对于函数定义域内任意一个x,都有f(-x)=-f(x)或f(-x)=f(x)”可知,具有奇偶性的函数的定义域必是关于原点对称.如本例中(1)函数f(x)=5x2,x∈(-3,3]的定义域不关于原点对称,所以不具有奇偶性.2.注意图像的变换一些常用的图像平移、变换要牢记,如本例中函数f(x)=|x-2|,就是要根据y=|x|的图像特征来平移得到,因为函数y=|x|的图像关于y轴对称,而向右平移2个单位后图像就不再关于y轴对称,故可得结论.函数f(x)=|x-2|-|x+1|是(C)A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数解析:f(x)=|x-2|-|x+1|当x≥2时,f(x)=x-2-x-1=-3,当x≤-1时,f(x)=2-x+x+1=3,当-1<x<2时,f(x)=2-x-x-1=1-2x.画出图像如图.由图知f(x)为非奇非偶函数.一、选择题1.下列所给函数中,是幂函数的是(C)A.y=-x3B.y=3xC.y=x 12D.y=x2-1解析:幂函数的形式为y=xα,只有C符合.2.幂函数y=xα(α∈R)的图像一定不经过(A)A.第四象限B.第三象限C.第二象限D.第一象限解析:∵α∈R,x>0,∴y=xα>0,∴图像不可能经过第四象限,故选A.3.已知函数f(x)是奇函数,且当x≥0时,f(x)=x2+2x,则当x<0时,f(x)=(D) A.x2+2x B.x2-2xC.-x2-2x D.-x2+2x解析:令x<0,则-x>0,∴f(-x)=(-x)2+2(-x)=x2-2x,又∵f(x)为奇函数,∴f(x)=-f(-x)=-(x2-2x)=-x2+2x.二、填空题4.已知幂函数f (x )的图像经过点(2,2),则f (4)=2. 解析:设f (x )=x α,∴α=12,∴f (4)=4 12 =2.5.已知函数f (x )=a (x +1)-2|x |+1的图像关于原点对称,则实数a =2.解析:由题意可知f (x )为奇函数,且奇函数f (x )=a (x +1)-2|x |+1在x =0处有意义,∴f (0)=0,∴a -21=0,∴a =2. 三、解答题6.已知f (x )=(m 2-2m -2)x m -1是幂函数,且在(0,+∞)上单调递增.(1)求m 的值;(2)求函数g (x )=f (x )-2ax +1在区间[2,3]上的最小值h (a ). 解:(1)∵f (x )=(m 2-2m -2)x m -1是幂函数, ∴m 2-2m -2=1,解得m =3或m =-1;又f (x )在(0,+∞)上单调递增,∴m -1>0,∴m 的值为3.(2)函数g (x )=f (x )-2ax +1=x 2-2ax +1=(x -a )2+1-a 2,当a <2时,g (x )在区间[2,3]上单调递增,最小值为h (a )=g (2)=5-4a ;当2≤a ≤3时,g (x )在区间[2,3]上先减后增,最小值为h (a )=g (a )=1-a 2; 当a >3时,g (x )在区间[2,3]上单调递减,最小值为h (a )=g (3)=10-6a .。
2020-2021学年新教材数学北师大版必修第一册教师用书:第2章§4 4.2简单幂函数的图象和性质含解析4.2简单幂函数的图象和性质学习目标核心素养1。
了解幂函数的概念.(重点)2.掌握y=x,y=x2,y=x3,y=错误!,y=x错误!的图象与性质.(重点)3.掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数有关问题.(重点、难点)1.借助幂函数的图象的学习,培养直观想象素养.2.通过幂函数的性质的学习,培养逻辑推理素养.1.幂函数的概念形如y=xα(α为常数)的函数,即底数是自变量、指数是常数的函数称为幂函数.思考:y=1错误!是幂函数吗?提示:是.因为它可写成y=x0错误!的形式.2.幂函数的图象如图在同一坐标系内作出函数(1)y=x;(2)y=x错误!;(3)y =x2;(4)y=x-1;(5)y=x3的图象.3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)α〉0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α〈1时,幂函数的图象上凸;(3)α〈0时,幂函数的图象在区间(0,+∞)上是减函数.1.已知幂函数f错误!=kxα的图象过点错误!,则k+α等于()A.错误!B.1C.错误!D.2C[由幂函数的定义知k=1.又f错误!=错误!,所以错误!错误!=错误!,解得α=错误!,从而k+α=错误!。
]2.函数y=x错误!的图象是()A B C DB[当0<x〈1时,x错误!>x;当x〉1时,x错误!<x,故选B。
]3.已知幂函数f(x)=(t3-t+1)x错误!(t∈Z)是偶函数,且在(0,+∞)上是增加的,则函数的解析式为________.f(x)=x2[∵f(x)是幂函数,∴t3-t+1=1,解得t=-1或t=0或t=1.当t=0时,f(x)=x错误!是非奇非偶函数,不满足题意;当t=1时,f(x)=x-2是偶函数,但在(0,+∞)上是减少的,不满足题意;当t=-1时,f(x)=x2,满足题意.综上所述,实数t的值为-1,所求解析式为f(x)=x2.]4.已知函数f(x)=(2m-3)x m+1是幂函数.(1)求m的值;(2)判断f(x)的奇偶性.[解](1)因为f(x)是幂函数,所以2m-3=1,即m=2。
简单幂函数的图象和性质
[A 级 基础巩固]
1.(多选)已知α∈{-1,1,2,3},则使函数y =x α
的值域为R ,且为奇函数的所有α的值为( )
A .1
B .-1
C .3
D .-3
解析:选AC 当α=-1时,y =x -1=1x
,为奇函数,但值域为{y |y ≠0},不满足条件. 当α=1时,y =x 为奇函数,值域为R ,满足条件.
当α=2时,y =x 2
为偶函数,值域为{y |y ≥0},不满足条件.
当α=3时,y =x 3为奇函数,值域为R ,满足条件.故选A 、C.
2.幂函数f (x )=x 2
3的大致图象为图中的( )
解析:选B 由于f (0)=0,所以排除C 、D 选项.又f (-x )=(-x )23=3(-x )2=3x
2=f (x ),且f (x )的定义域为R ,所以f (x )是偶函数,图象关于y 轴对称.
3.若f (x )是幂函数,且满足
f (4)f (2)=4,则f ⎝ ⎛⎭⎪⎫12=( ) A .-4
B .4
C .-12
D .14 解析:选D 设f (x )=x α,则f (4)=4α=22α,f (2)=2α
. ∵f (4)f (2)=22α
2
α=2α=4=22, ∴α=2,∴f (x )=x 2
, ∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122
=14
,故选D. 4.函数y =x m
n (m ,n ∈N +,且m ,n 互质)的图象如图所示,则( )
A .m ,n 是奇数,m n <1
B .m 是偶数,n 是奇数,m n >1
C .m 是偶数,n 是奇数,m n <1
D .m 是奇数,n 是偶数,m n
>1 解析:选C 由函数图象可知y =x m n 是偶函数,而m ,n 是互质的,故m 是偶数,n 是奇
数.又当x ∈(1,+∞)时,y =x m n 的图象在y =x 的图象下方,故m n
<1. 5.已知当x ∈[0,1]时,函数y =(mx -1)2
的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )
A .(0,1]∪[23,+∞)
B .(0,1]∪[3,+∞)
C .(0, 2 ]∪[23,+∞)
D .(0, 2 ]∪[3,+∞) 解析:选B 当0<m ≤1时,1m
≥1,y =(mx -1)2在[0,1]上单调递减,值域为[(m -1)2,1];y =x +m 在[0,1]上单调递增,值域为[m ,1+m ],此时两个函数图象有且仅有一个交
点.当m >1时,0<1m <1,y =(mx -1)2在⎣⎢⎡⎦
⎥⎤1m ,1上单调递增,所以要与y =x +m 的图象有且仅有一个交点,需(m -1)2≥1+m ,即m ≥3.综上所述,0<m ≤1或m ≥3.故选B.
6.已知幂函数f (x )=(m 2-3m +1)x
m 2-4m +1的图象不经过原点,则实数m 的值为________.
解析:依题意得m 2-3m +1=1,解得m =0或m =3.当m =0时,f (x )=x ,其图象经过原点,不符合题意;当m =3时,f (x )=x -2,其图象不经过原点,符合题意,因此实数m 的值为3.
答案:3
7.若幂函数y =(m 2-2m -2)x
-4m -2在(0,+∞)上单调递减,则实数m 的值是________. 解析:由题意可知m 2-2m -2=1,得m =3或m =-1.当m =3时,-4m -2=-14,幂
函数y =x -14在(0,+∞)上单调递减,满足题意;当m =-1时,-4m -2=2,幂函数y =x 2在(0,+∞)上单调递增,不满足题意,所以m =-1舍去.故m =3.
答案:3
8.有四个幂函数:①f (x )=x -1;②f (x )=x -2;③f (x )=x 3
;④f (x )=x 1
3.某同学研究了其中的一个函数,并给出这个函数的三个性质:
(1)是偶函数;(2)值域是{y |y ∈R ,且y ≠0};(3)在(-∞,0)上单调递增.
如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是________(填序号). 解析:对于函数①,f (x )=x -1是一个奇函数,值域是{y |y ∈R ,且y ≠0},在(-∞,
0)上单调递减,所以三个性质中有两个不正确;对于函数②,f (x )=x -2是一个偶函数,其
值域是{y |y ∈R ,且y >0},在(-∞,0)上单调递增,所以三个性质中有两个正确,符合条件;同理可判断③④中函数不符合条件.
答案:②
9.已知幂函数y =x m 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无交点,且关于y 轴对称,
求m 的值,并画出它的图象.
解:∵m ∈Z ,且图象与x 轴、y 轴均无交点,
∴m 2
-2m -3=(m +1)(m -3)≤0,
即-1≤m ≤3(m ∈Z).
又∵图象关于y 轴对称,
∴m 2-2m -3的值是偶数,得m =-1或m =1或m =3.
其中当m =1时,函数为y =x -4,图象如图①所示;
当m =-1或m =3时,
函数为y =x 0=1(x ≠0),图象如图②所示.
10.已知幂函数f (x )=x -2m 2-m +3,其中-2<m <2,且m ∈Z ,满足:
①在区间(0,+∞)上是增函数;
②对任意的x ∈R ,都有f (-x )+f (x )=0.
求同时满足条件①②的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域. 解:因为-2<m <2,且m ∈Z ,所以m =-1,0,1.
因为对任意的x ∈R ,都有f (-x )+f (x )=0,即f (-x )=-f (x ),所以f (x )是奇函数. 当m =-1时,f (x )=x 2只满足条件①而不满足条件②;
当m =1时,f (x )=x 0,条件①②都不满足;
当m =0时,f (x )=x 3,条件①②都满足.
因此f (x )=x 3,且f (x )在区间[0,3]上是增函数,所以0≤f (x )≤27,
故f (x )的值域为[0,27].
[B 级 综合运用]
11.有一种密钥密码系统可以保证信息的安全传输,其加密、解密原理为:发送方根据
加密密钥把明文转为密文(加密),接收方根据加密密钥把密文转为明文(解密).现在已知加密密钥为y =x α
(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.
解析:由题目可知加密密钥y =x α(α是常数)是一个幂函数,所以要想求得解密后得到
的明文,就必须先求出α的值.由题意得2=4α,解得α=12,则y =x 12.由x 12=3,得x =9.
答案:9
12.已知幂函数f (x )=x 1
m 2
+m (m ∈N +). (1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;
(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围.
解:(1)∵m ∈N +,
∴m 2+m =m (m +1)为偶数.
令m 2+m =2k ,k ∈N +,
则f (x )=2k x ,
∴f (x )的定义域为[0,+∞),且f (x )在[0,+∞)上为增函数.
(2)由题意可得2=212=21m 2+m ,∴m 2+m =2,解得m =1或m =-2(舍去),
∴f (x )=x 12,
由(1)知f (x )在定义域[0,+∞)上为增函数,
∴f (2-a )>f (a -1)等价于2-a >a -1≥0,解得1≤a <32,故实数a 的取值范围为⎣⎢⎡⎭
⎪⎫1,32.。