机械制图——平面立体的投影解析
- 格式:ppt
- 大小:2.08 MB
- 文档页数:22
机械制图之立体的投影引言在机械制图中,立体的投影是一个非常重要的概念。
立体的投影是将三维物体在二维平面上反映出来的一种方法,能够在制图过程中更加清晰地表达物体的形状、结构和尺寸。
本文将介绍机械制图中立体的投影的基本原理和常见的投影方法。
立体的投影原理立体的投影是基于投影原理来实现的。
在机械制图中,通常使用平行投影和透视投影两种方法。
平行投影平行投影是指通过平行投影线来投影物体的方法。
在平行投影中,投影线与物体平面平行,物体上各点在投影面上的投影位置与物体上的位置相对应,从而构成了物体的平行投影。
平行投影主要分为正射投影和斜投影两种。
正射投影是投影线与投影面垂直的一种投影方法,适用于表达物体的外形和尺寸。
斜投影是指投影线与投影面不垂直的投影方法,适用于表达物体在空间中的位置和形状。
透视投影透视投影是指通过透视原理来投影物体的方法。
在透视投影中,投影线与投影面相交,物体上的各点在投影面上的位置与物体上的位置不完全对应,从而构成了物体的透视投影。
透视投影能够更加真实地反映物体在空间中的位置和形状,适用于表达物体的逼真程度和透视效果。
常见的投影方法在机械制图中,常见的立体投影方法包括主视图、剖视图和投影视图。
主视图主视图是指将物体在三个主要投影面上的投影呈现出来的一种视图。
主视图包括前视图、俯视图和左视图。
前视图是指物体在前方投影面上的投影,能够表达物体的前方形状和尺寸。
俯视图是指物体在上方投影面上的投影,能够表达物体的上方形状和尺寸。
左视图是指物体在左侧投影面上的投影,能够表达物体的左侧形状和尺寸。
主视图通常以正交投影的方式呈现,即投影线与投影面相互垂直。
剖视图是指将物体通过截面呈现出来的一种视图。
在剖视图中,物体被切割,并将切面投影到投影面上。
剖视图能够表达物体的内部结构和细节。
剖视图常用于显示物体的内部零部件和装配方式,便于理解和分析。
投影视图投影视图是指将物体在其他投影面上的投影呈现出来的一种视图。
机械制图平面的投影及相对位置1. 引言机械制图是一种重要的工程设计辅助工具,用于显示和传达机械产品的形状、尺寸和组成部分。
在机械制图中,平面的投影和相对位置是至关重要的概念。
通过正确理解和运用这些概念,设计师可以准确地表达其设计意图,并确保实际制造的产品与设计一致。
本文将介绍机械制图平面的投影原理和相对位置的概念,以帮助读者更好地理解和运用这些概念。
2. 机械制图平面的投影在机械制图中,平面的投影是指将三维物体的形状在二维平面上进行表示的过程。
常见的机械制图平面投影有正投影和斜投影两种。
2.1 正投影正投影是将物体的各个点沿着垂直于平面的投影线,投影到平面上的过程。
在正投影中,平行于投影平面的线段在投影后仍然保持平行。
正投影可分为正射投影和斜投影两种类型。
•正射投影:在正射投影中,投影线垂直于投影平面。
常见的正射投影有正视图和俯视图。
•斜投影:在斜投影中,投影线与投影平面的夹角不为90度,即不垂直于投影平面。
斜投影可以提供更多的信息,如物体的形状和轮廓。
2.2 斜投影斜投影是一种将三维物体投影到二维平面上的方法,投影线不垂直于投影平面。
斜投影的优点是可以显示物体的真实形状和比例关系,但缺点是不容易确定物体的尺寸。
在斜投影中,常用的投影方法有等角度斜投影和等距离斜投影两种。
•等角度斜投影:在等角度斜投影中,投影线与平行于投影平面的线段夹角相等。
•等距离斜投影:在等距离斜投影中,投影线与平行于投影平面的线段之间的距离相等。
3. 机械制图平面的相对位置在机械制图中,平面的相对位置是指不同平面之间的位置关系。
常见的相对位置关系有平行、垂直和倾斜三种。
3.1 平行平行是指两个平面之间的投影线相互平行。
平行的平面在制图中通常使用相同的符号表示。
3.2 垂直垂直是指两个平面之间的投影线相互垂直。
垂直的平面在制图中通常使用符号。
第二章立体的投影§2—1 liti表面上的点与线立体由其表面所围成,可分为两类:表面都是平面的平面立体和表面是曲面或曲面与平面的曲面立体。
一、平面立体平面立体由若干多边形所围成,因此,绘制平面立体的投影,可归结为绘制它的所有多边形表面的投影,也就是绘制这些多边形的边和顶点的投影。
多边形的边是平面立体的轮廓线,分别是平面立体的每两个多边形表面的交线。
当轮廓线的投影为可见时,画粗实线;不可见时,画虚线;当粗实线与虚线重合时,应画粗实线。
工程上常用的平面立体是棱柱和棱锥(包括棱台)。
图2一l是一个正五棱柱的立体图和投影图。
本书从这里开始,在投影图中都不画投影轴。
只要按照各点的正面投影和水平投影位于铅垂的投影连线上,正面投影与侧面投影位于水平的投影连线上,以及任两点的水平投影和侧面投影保持前后方向的宽度相等和前后对应的三条原则绘图,投影轴是不必画的,在实际应用中通常也不画投影轴。
如图2一la所示,正五棱柱的顶面和底面都是水平面,它们的边分别都是四条水平线和一条侧垂线,棱面是四个铅垂面和一个正平面,棱线是五条铅垂线。
图2一lb是正五棱柱的投影图,请读者自行阅读分析棱线和棱面的投影及其可见性。
在图2一lb中,请特别注意水平投影与侧面投影之间必须符合宽度相等和前后对应的关系。
例如前棱线与后棱面之间的宽度,左、右棱线与后棱面之间的宽度,分别为y和y。
;并且,前棱线和左、右棱线都分别在后棱面之前。
这种水平投影和侧面投影之间的关系,一般可如图2—1b所示,直接量取相等的距离作图;但也可如图2—2所示,用添加45。
辅助线作图。
图2—2是一个正三棱锥的投影图。
从图中可见:底面是水平面;前、后棱面都是一般位置平面;右棱面是正垂面。
从图中还可看出:除了底面的正面投影和侧面投影、右棱面的正面投影有积聚性外,三个棱面的水平投影都可见,底面的水平投影不可见;前棱面的正面投影可见,后棱面的正面投影不可见;前、后棱面的侧面投影可见,右棱面的侧面投影不可见。
第2章立体的投影2.1 立体及其表面上的点与线立体由其表面所围成,可分为两类:表面都是平面的平面立体和表面是曲面或曲面与平面的曲面立体。
一、平面立体平面立体由若干多边形所围成,因此,绘制平面立体的投影,可归结为绘制它的所有多边形表面的投影,也就是绘制这些多边形的边和顶点的投影。
多边形的边是平面立体的轮廓线,分别是平面立体的每两个多边形表面的交线。
当轮廓线的投影为可见时,画粗实线;不可见时,画虚线;当粗实线与虚线相重合时,应画粗实线。
常见的平面立体有棱柱和棱锥。
1、棱柱2、棱锥平面立体的投影的外围轮廓总是可见的,应画粗实线;而在投影的外围轮廓内部的图线,则应根据线、面的投影分析,按前遮后、上遮下、左遮右直接判断投影的可见性,决定画粗实线或虚线,必要时还可利用交叉两直线的重影点的可见性进行判断。
二、曲面立体曲面立体由曲面或曲面与平面所围成。
有的曲面立体有轮廓线,即表面之间的交线,如圆柱;有的曲面立体有尖点,如圆锥;有的曲面立体全部由光滑的曲面所围成,如圆球。
在画曲面立体的投影时,除了画出轮廓线和尖点外,还要画出曲面投影的转向轮廓线。
曲面立体的转向轮廓线是切于曲面的诸投射线与投影面的交点的集合,也就是这些投射线所组成的平面或柱面与曲面的切线的投影,常常是曲面的可见投影和不可见投影的分界线。
曲面立体的投影就是它的所有曲面表面或曲面表面与平面表面的投影,也就是曲面立体的轮廓线、尖点的投影和曲面投影的转向轮廓线。
常见的曲面立体有圆柱、圆锥、圆球,圆环。
1、圆柱圆柱由圆柱面、顶面和底面所围成。
圆柱面由直线绕与它平行的轴线旋转而成。
因此,画圆柱的投影就是画顶面和底面及轮廓线、圆柱面投影的转向轮廓线、轴线。
当圆柱的轴线与投影面垂直时,圆柱面在轴线垂直的投影面上的投影具有积聚性。
因此,作圆柱表面2、 圆锥圆锥由圆锥面和底面所围成。
圆锥面由直线绕与它相交的轴线旋转而成。
因此,画圆锥的投影就是画尖点(即锥顶)、底面及轮廓线、圆锥面投影的转向轮廓线、轴线。