不等关系与不等式(第一课时)
- 格式:pptx
- 大小:1.10 MB
- 文档页数:15
3.1 不等关系与不等式(第一课时)大冶一中柯尊胜一、教学目标(1)通过实例,明确不等量关系的存在.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,学会依据具体问题的实际背景分析问题、解决问题的方法.(2)学会依据具体问题的实际背景分析问题、解决问题的方法;在实际问题中抽象出不等关系,培养学生的抽象思维能力,正确运用数学语言的表述能力;通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.二.教学的重点与难点重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.理解不等式的基本性质,并能用以解决简单的数学问题。
难点:用不等式(组)正确表示出不等关系.三、教学方法以广泛的相关事例为指导,辅以信息技术手段,采用问题式引导探究,并与讲解演练相结合,在实例中抽象,在抽象中提升。
四、教学基本流程创设情景,由实例引入新课用不等式表示不等关系不等式的基本性质及简单应用小结,用不等式表示不等关系、不等式基本性质五、教学过程实际问题中的不等关系引例1 今天的天气预报说:明天早晨最低温度为7℃,明天白天的最高温度为13℃;引例2 限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:.引例3 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,用不等式可以表示为________.几何中的不等关系1、两点间直线段最短。
2、三角形两边之和大于第三边、两边之差小于第三边。
3. 设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d 与两点的距离|AB|是什么关系?实数的基本不等关系1、正数大于零、负数小于零;2、非负数大于或小于零、非正数不大于零;3、实数的平方不小于零,实数的绝对值大于或等于零;4、“同号积为正,异号积为负。
§3.1.1不等关系与不等式(第一课时)教学重点:理解不等式的意义,建立适当的不等式(组)表示不等关系.教学难点:如何从具体问题情境中抽象出数学模型并建立不等式.教学过程:一、设置情境,引发思考学生辅助学习素材1.视频:(1)国庆50周年阅兵式;(2)祖国大地山川秀美;(3)道路限速路标;(4)天平测质量;(5)跷跷板游戏.【制作提示】用数学的眼光看世界,认识世界,感受现实世界中相等关系与不等关系普遍存在,感受数学之美,增强用数学的意识.等量关系体现了数学的对称美、统一美、和谐美、平衡美,不等关系则如同仙苑奇葩呈现出数学的奇异美、层次美.2.你还能举出哪些更多的不等关系的实例?3.你能否用所学过的哪种数学知识来表示和研究这些不等关系?二、提出问题,激发探究学生活动:尝试用适当的不等式表示下列问题中所蕴含的不等关系:1.设点A与平面的距离为d,B为平面上的任意一点,表示d与|AB|之间的不等关系.2.某种杂志原以每本世纪末2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x元,使销售总收入不低于20万元应怎样表示?3.小圆的半径为r,大圆的半径为R,两圆的圆心距离为d,若两圆相交,则d应满足什么关系?4.学习素材中蕴含不等关系的表示.建构数学:把生活中的具体问题转化成数学问题,并用恰当的数学模型(不等式)表示出来即为本节课的核心问题.其具体步骤为:实际问题:不等关系→(抽象概括)→数学问题:不等式数学模型:不等式→(刻画)→实际问题:不等关系三、巩固结论,尝试应用〖例1〗某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍,怎样写出满足上述所有不等关系的不等式呢?〖问题〗(1)本例涉及哪几个变量?(2)哪句话中体现了不等关系?〖例2〗某单位计划10月份组织员工到泰山旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量相同,且组织到泰山旅游的价格都是每人200元,甲旅行社表示可给予每位旅客七五折优惠;乙旅行社表示先免去一位旅客的旅游费用,其余游客八折优惠.问该单位怎样选择,使其支付的旅游费用较少?〖问题〗(1)若有10人,应选择哪家旅行社?(2)满足什么条件,选择甲旅行社更优惠?(3)满足什么条件,选择乙旅行社更优惠?(4)你对解决本例中的问题有什么想法?〖例3〗由下表给出了甲、乙、丙三种食物的维生素含量及其成本.现欲将三种食物混合成100kg的食品,要使混合食品中至少含有35000单位的维生素A 和40000单位的维生素B,设甲、乙两种食物各取x kg、y kg,那么x、y应满怎样的关系?〖问题〗(1)从这段话中可以抽象出哪几种不等关系?(2)混合食品有哪几中成分组成,含量各为多少?(3)各成分中的维生素A和维生素B的含量又是多少?四、反思小结,理论升华(1)解决实际问题的常规步骤:实际问题:不等关系→(抽象概括)→数学问题:不等式数学模型:不等式→(刻画)→实际问题:不等关系(2)一个重要数学模型:不等关系.【反馈练习】(只列出不等关系,不求解)(1)a与b的和是非负数;(2)某公路立交桥对通过车辆的高度h“限高4m”;(3)在一个面积为350m2的矩形地基上建造一个仓库,四周是绿地.仓库的长L大于宽W的4倍.(4)有一个两位数大于50而小于60,其个位数字比十位数字大2.试用不等式表示上述关系,并求出这个两位数(用a、b分别表示这个两位数的十位数字和个位数字).(5)某种植物适宜生长在温度在18°~20°的山区,已知山区海拔每升高100米,气温下降0.55°.现测得山脚下的平均温度为22°,试问该植物种植在山区多高处较为适宜?(6)某市政府准备投资1800万元兴办一所中学,经调查,班级数量以20到30个为宜,每个初、高中班硬件配置分别为28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是什么?五、布置作业1.书面作业:教材P83习题3.1 A组第4、5题B组第3题2.课外思考:b克糖水中有a克糖(b>a>0),若再加入m克(m>0)糖,则糖水更甜了,为什么?你能否用不等式的知识给出合理的解释?。
2.1 等式性质与不等式性质第一课时 不等关系与不等式基础达标一、选择题1.下面能表示“a 与b 的和是非正数”的不等式为( ) A.a +b <0 B.a +b >0 C.a +b ≤0D.a +b ≥0解析 a 与b 的和是非正数,即a +b ≤0. 答案 C2.大桥桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车和货的总重量T 满足关系为( ) A.T <40 B.T >40 C.T ≤40D.T ≥40解析 “限重40吨”用不等式表示为T ≤40. 答案 C3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A.M >N B.M =N C.M <ND.与x 有关解析 ∵M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴M >N .答案 A4.下列不等式,正确的个数为( )①x 2+3>2x (x ∈R );②a 3+b 3≥a 2b +ab 2;③a 2+b 2≥2(a -b -1). A.0 B.1 C.2D.3解析 ①x 2+3-2x =(x -1)2+2>0,∴x 2+3>2x ;②a 3+b 3-a 2b -ab 2=(a +b )(a 2-ab +b 2)-ab (a +b )=(a +b )(a 2-2ab +b 2)=(a +b )(a -b )2,(a -b )2≥0,但a +b 的符号不能确定,∴②不一定正确;③a 2+b 2-2(a -b -1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1).故①③正确,选C. 答案 C5.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A.h 2>h 1>h 4B.h 1>h 2>h 3C.h 3>h 2>h 4D.h 2>h 4>h 1解析 根据四个杯的形状分析易知h 2>h 1>h 4或h 2>h 3>h 4. 答案 A 二、填空题6.不等式a 2+4≥4a 中,等号成立的条件为________. 解析 令a 2+4=4a ,则a 2-4a +4=0,∴a =2. 答案 a =27.已知a ,b ∈R ,且ab ≠0,则ab -a 2________b 2(填“<”,“>”,“=”). 解析 两式作差得,ab -a 2-b 2=-⎝ ⎛⎭⎪⎫a -b 22-34b 2<0,所以,ab -a 2<b 2.答案 <8.(多空题)一辆汽车原来每天行驶x km ,如果该辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写出不等式为______________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为____________.解析 由题意知,汽车原来每天行驶x km ,8天内它的行程超过2 200 km ,则8(x +19)>2 200.若每天行驶的路程比原来少12 km ,则原来行驶8天的路程就要用9天多,即8xx -12>9.答案 8(x +19)>2 200 8xx -12>9 三、解答题9.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来. 解 据题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ). 10.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.能力提升11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A.M <N B.M >N C.M =ND.无法确定解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B. 答案 B12.有学生若干人,住若干宿舍,如果每间住4人,那么还余19人,如果每间住6人,那么只有一间不满但不空,求宿舍间数和学生人数. 解 设宿舍有x 间,则学生有(4x +19)人,依题意, ⎩⎨⎧4x +19<6x ,4x +19>6(x -1).解得192<x <252. ∵x ∈N *,∴x =10,11或12.学生人数分别为59,63,67.故宿舍间数和学生人数分别为10间59人,11间63人或12间67人.创新猜想13.(多选题)下列说法错误的是()A.某人月收入x元不高于2 000元可表示为“x<2 000”B.小明的身高为x,小华的身高为y,则小明比小华矮可表示为“x>y”C.变量x不小于a可表示为“x≥a”D.变量y不超过a可表示为“y≥a”解析对于A,x应满足x≤2 000,故A错误;对于B,x,y应满足x<y,故B错误;C正确;对于D,y和a的大小关系可表示为“y≤a”,故D错误.答案ABD14.(多空题)已知a,b∈R,若ab=1,则a2+b2的最小值是________,当且仅当a =b=________,取得最小值.解析根据a2+b2-2ab=(a-b)2≥0,故a2+b2≥2ab=2,当且仅当a-b=0即a=b=±1时等号成立.答案2±1。