高中数学第一章不等关系与基本不等式1.2含有绝对值的不等式1.2.1含有绝对值的不等式北师大版选修
- 格式:ppt
- 大小:495.00 KB
- 文档页数:20
课 题:含有绝对值的不等式(1)教学目的:1.理解含有绝对值的不等式的性质;2.培养学生观察、推理的思维能力, 使学生树立创新意识; 3运用联系的观点解决问题,提高学生的数学素质;4.认识不等式证法的多样性、灵活性教学重点:含有绝对值不等式的性质、定理的综合运用教学难点:对性质的理解、常见证明技巧授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:前面我们已学过不等式的性质和证明方法,这一节我们再来研究一些含有绝对值的不等式的证明问题我们知道,当a >0时,|x |<a ⇔-a <x <a ,|x |>a ⇔x >a 或x <-a根据上面的结果和不等式的性质,我们可以推导出含有绝对值的不等式具有下面的性质二、讲解新课:定理:||||||||||b a b a b a +≤+≤-证明:∵|||||)||(|||||||||b a b a b a b b b a a a +≤+≤+-⇒⎭⎬⎫≤≤-≤≤- ||||||b a b a +≤+⇒ ①又∵a =a +b -b |-b |=|b |由①|a |=|a +b -b |≤|a +b |+|-b | 即|a |-|b |≤|a +b | ②综合①②: ||||||||||b a b a b a +≤+≤-注意:1︒ 左边可以“加强”同样成立,即||||||||||b a b a b a +≤+≤-2︒ 这个不等式俗称“三角不等式”—三角形中两边之和大于第三边,两边之差小于第三边3︒ a ,b 同号时右边取“=”,a ,b 异号时左边取“=”推论1:||21n a a a +++ ≤||||||21n a a a +++推论2:||||||||||b a b a b a +≤-≤-证明:在定理中以-b 代b 得:|||||)(|||||b a b a b a -+≤-+≤--即 ||||||||||b a b a b a +≤-≤-三、讲解范例:例1 已知|x |<3ε,|y |<6ε,|z |<9ε, 求证 |x +2y -3z |<ε 证明:|x +2y -3z |≤|x |+|2y |+|-3z |=|x |+2|y |+3|z |∵|x |<3ε,|y |<6ε,|z |<9ε, ∴|x |+2|y |+3|z |<εεεε=++93623 ∴|x +2y -3z |<ε说明:此例题主要应用了推论1,其中出现的字母ε,其目的是为学生以后学习微积分作点准备例2 设a , b , c , d 都是不等于0的实数,求证||||||||a d d c cb b a +++≥4证明:∵ ,0||,0||,0||,0||>>>>ad a c c b b a ∴,||2||2||||2||||ca cb b ac b b a c b b a =⋅=⋅≥+ ① ,||2||2||||2||||ac ad d c a d d c a d d c =⋅=⋅≥+ ② 又 2||2||||2||||4=⋅=⋅≥+a c c a a c c a ac c a ③ 由①,②,③式,得4)||||2( ||2||2||||||||≥+=+≥+++ac c a a c c a ad d c c b b a 说明:此题作为一个含绝对值的不等式,在证明过程中运用了基本不等式及不等式的性质,在证法上采用的是综合法例3 已知|a |<1,|b |<1,求证|1|abb a ++<1 证明:|1|ab b a ++<122)1()(ab b a ++⇔<1 .0)1)(1(012122222222222>--⇔>+--⇔++<++⇔b a b a b a b a ab b ab a 由|a |<1,|b |<1,可知(1-a 2)(1-b 2)>0成立,所以 |1|abb a ++<1 说明:此题运用了|x |<a ⇔x 2<a 2这一等价条件将绝对值符号去掉,并采用了求差比较法证明其等价不等式的正确性,并用到了绝对值的有关性质,也体现了证明不等式的方法的综合性和灵活性例4 设|a |<1, |b |<1 求证|a +b |+|a -b |<2证明:当a +b 与a -b 同号时,|a +b |+|a -b |=|a +b +a -b |=2|a |<2当a +b 与a -b 异号时,|a +b |+|a -b |=|a +b -(a -b )|=2|b |<2∴|a +b |+|a -b |<2例5 已知21)(x x f += 当a ≠b 时 求证:|||)()(|b a b f a f -<- 证法一:1111|11||)()(|222222+++--+=+-+=-b a b a b a b f a f|||||)(||||))((|11||222222b a b a b a b a b a b a b a b a +-+=+-+<+++-= |||||||||)||(|b a b a b a b a -=+-+≤ 证法二:(构造法)如图21)(a a f OA +==,f OB =||||b a AB -=,由三角形两边之差小于第三边得|||)()(|b a b f a f -<-四、课堂练习:已知:|x -1|≤1,求证:(1)|2x +3|≤7; (2)|x 2-1|≤3证明:(1)∵|2x +3|=|2(x -1)+5|≤2|x -1|+5≤2+5=7(2)|x 2-1|=|(x +1)(x -1)|=|(x -1)[(x -1)+2]|≤|x -1||(x -1)+2|≤|x -1|+2≤1+2=3五、小结 :通过本节学习,要求大家理解含有绝对值不等式的性质,并能够简单的应用,同时认识证明不等式的方法的灵活性、多样性六、课后作业: 1:(1)a ,b ∈R ,求证|a +b |≤|a |+|b |;(2)已知|h |<ε,|k |<ε(ε>0),求证:|hk |<ε;(3)已知|h |<c ε, c <|x | (c >0,ε>0),求证:|xh |<ε 分析:用绝对值性质及不等式性质作推理运算绝对值性质有:|ab |=|a |·|b |;|a n |=|a |n ,|b a |=ba 等证明:(1)证法1:∵-|a |≤a ≤|a |,-|b |≤b ≤|b |∴-(|a |+|b |)≤a +b ≤|a |+|b | 即|a +b |≤|a |+|b |证法2:(平方作差)(|a |+|b |)2-|a +b |2=a 2+2|a ||b |+b 2-(a 2+2ab +b 2)=2[|a |·|b |-ab )=2(|ab |-ab )≥0显然成立故(|a |+|b |)2≥|a +b |2又∵|a |+|b |≥0,|a +b |≥0,所以|a |+|b |≥|a +b |, 即|a +b |≤|a |+|b |(2)∵0≤|h |<ε,0≤|k |<ε (ε>0),∴0≤|hk |=|h |·|k |<ε·ε=ε(3)由0<c <|x |可知: 0<c x 11<且0≤|h |<c ε,∴c h x 11<⋅·c ε,即|xh |<ε 2:|x +x1|≥2(x ≠0) 分析:x 与x 1同号,因此有|x +x 1|=|x |+|x 1| 证法一:∵x 与x 1同号,∴|x +x1|=|x |+x 1∴|x +x 1|=|x |+x 1≥2xx 1⋅=2,即|x +x 1|≥2 证法二:当x >0时,x +x1≥2x x 1⋅=2 当x <0时,-x >0,有-x +2121)(21-≤+⇒=-⋅-≥-xx x x x ∴x ∈R 且x ≠0时有x +x 1≤-2,或x +x 1≥2 即|x +x1|≥2 方法点拨:不少同学这样解: 因为|x +x 1|≤|x |+x 1,又|x |+x 1≥2xx 1⋅=2,所以|x +x 1|≥2 学生认为这样解答是根据不等式的传递性实际上,上述两个不等式是异向不等式,是不符合传递性的,因而如此作解是错误的 3:|A-a |<2ε,|B-b |<2ε,求证: (1)|(A +B )-(a +b )|<ε;(2)|(A -B )-(a -b )|<ε分析:证明本题的关键是把结论的左边凑出条件的左边,创造利用条件的机会证明:因为|A -a |<2ε,|B -b 2所以(1)|(A +B )-(a +b )|=|(A -a )+(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A +B )-(a +b )|<ε(2)|(A -B )-(a -b )|=|(A -a )-(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A -B )-(a -b )|<ε方法点拨:本题的证明过程中运用了凑的技巧,望给予足够重视,灵活掌握七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
二绝对值不等式1.绝对值三角不等式课后篇巩固探究A组1.设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.其中正确的是()A.①②B.①③C.①④D.②④ab>0,∴a,b同号.∴|a+b|=|a|+|b|>|a|-|b|.∴①④正确.2.函数f(x)=|3-x|+|x-7|的最小值等于()A.10B.3C.7D.4|3-x|+|x-7|≥|(3-x)+(x-7)|=4,所以函数f(x)的最小值为4.3.已知|a|≠|b|,m=,n=,则m,n之间的大小关系是()A.m>nB.m<nC.m=nD.m≤n,知|a|-|b|≤|a±b|≤|a|+|b|.∴≤1≤.∴m≤n.4.若|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不确定(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2;当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2,综上有|a+b|+|a-b|<2.5.若关于x的不等式|x|+|x-1|<a(a∈R)的解集为⌀,则a的取值X围是()A.[-1,1]B.(-1,1)C.(-∞,1]D.(-∞,1)|x|+|x-1|≥|x-(x-1)|=1,∴若关于x的不等式|x|+|x-1|<a的解集为⌀,则a的取值X围是a≤1.6.若a,b∈R,且|a|≤3,|b|≤2,则|a+b|的最大值是,最小值是.|a|-|b|≤|a+b|≤|a|+|b|,所以1=3-2≤|a+b|≤3+2=5.7.若不等式|x-4|-|x-3|≤a对一切x∈R恒成立,则实数a的取值X围是.f(x)=|x-4|-|x-3|,则f(x)≤a对一切x∈R恒成立的充要条件是a大于等于f(x)的最大值.∵|x-4|-|x-3|≤|(x-4)-(x-3)|=1,即f(x)max=1,∴a≥1.+∞)8.不等式≥1成立的充要条件是.1⇔≥0⇔(|a|-|b|)[|a+b|-(|a|-|b|)]≥0(且|a|-|b|≠0).而|a+b|≥|a|-|b|,∴|a+b|-(|a|-|b|)≥0.∴|a|-|b|>0,即|a|>|b|.9.设m等于|a|,|b|和1中最大的一个,当|x|>m时,求证<2.m等于|a|,|b|和1中最大的一个,|x|>m,∴∴==2.故原不等式成立.10.导学号26394011已知函数f(x)=log2(|x-1|+|x-5|-a).(1)当a=2时,求函数f(x)的最小值;(2)当函数f(x)的定义域为R时,某某数a的取值X围.函数的定义域满足|x-1|+|x-5|-a>0,即|x-1|+|x-5|>a.设g(x)=|x-1|+|x-5|,由|x-1|+|x-5|≥|x-1+5-x|=4,当a=2时,∵g(x)min=4,∴f(x)min=log2(4-2)=1.(2)由(1)知,g(x)=|x-1|+|x-5|的最小值为4.∵|x-1|+|x-5|-a>0,∴a<g(x)min时,f(x)的定义域为R.∴a<4,即a的取值X围是(-∞,4).B组1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为()A.1B.2C.3D.4|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.2.函数f(x)=|2x+1|-|x-4|的最小值等于.y=|2x+1|-|x-4|,则y=作出函数y=|2x+1|-|x-4|的图象(如图),由函数的图象可知,当x=-时,函数取得最小值-.3.已知a和b是任意非零实数,则的最小值为.4.4.下列四个不等式:①log x10+lg x≥2(x>1);②|a-b|<|a|+|b|;③≥2(ab≠0);④|x-1|+|x-2|≥1,其中恒成立的是.(把你认为正确的序号都填上)x>1,∴lg x>0,∴log x10+lg x=+lg x≥2,①正确;当ab≤0时,|a-b|=|a|+|b|,②不正确;∵ab≠0,同号,∴≥2,③正确;由|x-1|+|x-2|的几何意义知|x-1|+|x-2|≥1恒成立,④也正确;综上,①③④正确.5.导学号26394012已知函数f(x)=x2-x+13,|x-a|<1,求证|f(x)-f(a)|<2(|a|+1).|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).6.导学号26394013已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1,求证:(1)|c|≤1;(2)当-1≤x≤1时,|g(x)|≤2.∵当-1≤x≤1时,|f(x)|≤1,∴|f(0)|≤1,即|c|≤1.(2)当a>0时,g(x)=ax+b在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a<0时,g(x)=ax+b在[-1,1]上是减函数,∴g(-1)≥g(x)≥g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2.g(1)=a+b=f(1)-c≥-(|f(1)|+|c|)≥-2.∴|g(x)|≤2.当a=0时,g(x)=b,f(x)=bx+c,且-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上可知,|g(x)|≤2.。
1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。
§1不等式的性质[对应学生用书P1][自主学习]1.实数大小的比较求差法a >b ⇔a -b >0;a <b ⇔a -b <0; a =b ⇔a -b =0.求商法当a >0,b >0时,⎩⎪⎨⎪⎧ab>1⇔a >b ;ab <1⇔a <b ;a b =1⇔a =b .2(1)性质1(对称性):如果a >b ,那么b <a ; 如果b <a ,那么a >b .(2)性质2(传递性):如果a >b ,b >c ,那么,a >c . (3)性质3(加法性质):如果a >b ,那么a +c >b +c . ①移项法则:如果a +b >c ,那么a >c -b .②推论(加法法则):如果a >b ,c >d ,那么a +c >b +d . (4)性质4(乘法性质):如果a >b ,c >0,那么ac >bc , 如果a >b ,c <0,那么ac <bc .①推论1(乘法法则):如果a >b >0,c >d >0,那么ac >bd . ②推论2(平方法则):如果a >b >0,那么a 2>b 2.③推论3(乘方法则):如果a >b >0,那么a n>b n (n 为正整数).④推论4(开方法则):如果a >b >0,那么a 1n >b 1n(n 为正整数).[合作探究]1.怎样比较两个代数式的大小?提示:整式、分式一般用求差的方法来比较大小;而算式则一般用求商的方法来比较大小.2.两个不同向不等式的两边可以分别相减或相除吗? 提示:不可以,两个不同向不等式的两边不能分别相减,也不能分别相除,在需求差或商时,可利用不等式性质化为同向不等式相加或相乘,例如:a >b 且c <d ⇒a >b 且-c >-d ,⇒a -c >b -d .3.若a >b >0,当n <0时,a n >b n成立吗?提示:不成立,如当a =3,b =2,n =-1时, 3-1=13<12=2-1.[对应学生用书P1]比较大小[例1] (1) (2)设a >0,b >0,求证:a a b b≥(ab )a +b2.[思路点拨] 本题考查求差比较法及求商比较法在比较代数式大小中的应用,同时考查了运算及转化能力,解答此题(1)需要用求差的方法比较,解答(2)需要用求商的方法证明.[精解详析] (1)a 4-b 4-4a 3(a -b )=(a -b )(a +b )(a 2+b 2)-4a 3(a -b ) =(a -b )[(a +b )(a 2+b 2)-4a 3] =(a -b )(a 3+ab 2+ba 2+b 3-4a 3)=(a -b )[(ab 2-a 3)+(ba 2-a 3)+(b 3-a 3)] =(a -b )(a -b )[-a (a +b )-a 2-(a 2+b 2+ab )] =-(a -b )2(3a 2+2ab +b 2) =-(a -b )2[(3a +b3)2+23b 2]≤0(当且仅当a =b 时取等号). ∴a 4-b 4≤4a 3(a -b ).(2)证明:∵a a b b>0,(ab )>0,∴a a b bab =a ·b =⎝ ⎛⎭⎪⎫a b .①当a =b 时,显然有(a b )a -b 2=1,②当a >b >0时,a b >1,a -b2>0,③当b >a >0时,0<a b<1,a -b2<0.由指数函数的单调性,②③均有⎝ ⎛⎭⎪⎫a b a -b2>1.综上可知,对任意正数a ,b ,都有a a b b≥(ab )a +b2.比较大小的常用方法及步骤:1.求差法:a ≥b ⇔a -b ≥0,a ≤b ⇔a -b ≤0.一般步骤是:作差→变形→判号→定论.变形是作差法的关键,配方和因式分解是常用的变形手段. 2.求商法:当a >0,b >0时,把比较a ,b 的大小转化为比较ab与1的大小关系,此即为作商比较法. 理论依据是不等式的性质:若a >0,b >0,则a b ≥1⇔a ≥b ,ab≤1⇔a ≤b .一般步骤为:作商→变形→与1比较大小→定论. 1.已知x ≠0,求证:(x 2-1)2<x 4+x 2+1. 证明:(x 2-1)2-(x 4+x 2+1) =x 4-2x 2+1-x 4-x 2-1 =-3x 2<0,∴(x 2-1)2<x 4+x 2+1.2.设a >b >0,求证:a 2-b 2a 2+b 2>a -ba +b .证明:法一:a 2-b 2a 2+b 2-a -ba +b=a -b [a +b 2-a 2+b 2]a 2+b 2a +b=2ab a -ba 2+b 2a +b>0, 所以原不等式成立.法二:∵a >b >0,故a 2>b 2>0.故左边>0,右边>0.∴左边右边=a +b 2a 2+b 2=1+2ab a 2+b 2>1. ∴原不等式成立.利用不等式的性质辨别不等式的正误(1)若a >b ,则ac <bc ; (2)若ac 2>bc 2,则a >b ; (3)若a <b <0,则a 2>ab >b 2; (4)若a <b <0,则|a |>|b |; (5)若c >a >b >0,则ac -a >bc -b.[思路点拨] 本题考查不等式性质的应用及逻辑推理能力.解答此题需要依据实数的基本性质,实数的符号的运算法则以及不等式性质,然后经过合理逻辑推理即可判断.[精解详析] (1)由于c 的符号未知,因而不能判断ac ,bc 的大小关系,故该命题是假命题.(2)由ac 2>bc 2知c ≠0,而c 2>0, ∴a >b ,故该命题是真命题.(3)⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ;又⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,故该命题是真命题.(4)两个负实数,较小的离原点远,其绝对值反而大,故该命题是真命题.(5)⎭⎪⎬⎪⎫a >b >0⇒-a <-b <0 c >a >b >0 ⇒0<c -a <c -b⇒⎭⎪⎬⎪⎫1c -a >1c -b >0 a >b >0⇒ac -a >bc -b,故该命题是真命题.在利用不等式性质判断不等式真假时,关键是依据题设条件,正确恰当地选择使用不等式的性质,当否定一个结论时只需举一个反例即可;有时也可采用特殊方法比较判断.3.若a >b >c ,则下面不等式中一定成立的是( ) A .a |c |>b |c | B .ab >ac C .a -|c |>b -|c |D.1a <1b <1c解析:选项A 需要c ≠0,选项B 需要a >0,选项D 需要a ,b ,c 同号.答案:C4.利用不等式的性质判断下列各命题是否成立,并简述理由.(1)a >b ⇒2-x ·a >2-x·b . (2)a >b ,c >d ⇒a -c >b -d .(3)a >b ,c <d ,cd ≠0⇒a c >bd.(4)a <b <0⇒1a -b >1a .解:(1)成立.因为2-x>0,由性质(4)知2-x·a >2-x·b .(2)不成立.令a =5,b =4,c =3,d =1,有a -c <b -d .(3)不成立.当a >b >0,c <0,d >0时显然有a c <bd.(4)不成立. 1a -b -1a =b aa -b ,由a <b <0,可得1a -b <1a.利用不等式的基本性质求代数式的取值范围________,xy的取值范围为________.[思路点拨] 利用不等式性质,先求-y 和1y的取值范围,再求x -y 和xy的取值范围.[精解详析] x -y =x +(-y ), 所以需先求出-y 的取值范围;x y =x ×1y ,所以需先求出1y的取值范围. ∵28<y <33,∴-33<-y <-28,133<1y <128.又60<x <84,∴27<x -y <56,6033<x y <8428.即2011<xy<3. [答案] 27<x -y <56 2011<xy<3本题不能直接用x 的取值范围去减或除y 的取值范围,应严格利用不等式的基本性质去求得取值范围;其次在有些题目中,还要注意整体代换的思想,即弄清要求的与已知的“取值范围”间的联系.如已知20<x +y <30,15<x -y <18,要求2x +3y 的取值范围,不能分别求出x ,y 的取值范围,再求2x +3y 的取值范围,应把已知的“x +y ”“x -y ”视为整体,即2x +3y =52(x +y )-12(x-y )来求2x +3y 的取值范围,或根据线性规化知识求目标函数z =2x +3y 的取值范围.5.已知①-1≤a +b ≤1,②1≤a -b ≤3,求3a -b 的取值范围.解:设3a -b =x (a +b )+y (a -b )=(x +y )a +(x -y )b .∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,∴⎩⎪⎨⎪⎧x =1,y =2.由①+②×2得:-1+2≤(a +b )+2(a -b )≤1+3×2, 即1≤3a -b ≤7.利用不等式的性质证明不等式[例4] 若a >b >0,c <d <0,e <0.求证: (1)ea -c >eb -d;(2)e a -c2>e b -d2.[思路点拨] 本题考查不等式性质的应用及逻辑推理能力.解答本题可先比较a -c 与b -d ,(a -c )2与(b -d )2的大小,进而判断1a -c 与1b -d,1a -c2与1b -d2的大小,再两边同乘以负数e ,得出要证明的结论.[精解详析] ∵c <d <0,∴-c >-d >0, ∵a >b >0,∴a -c >b -d >0. (*) (1)由(*)式知1a -c <1b -d .又∵e <0,∴ea -c >eb -d.(2)由(*)式知(a -c )2>(b -d )2>0, ∴1b -d2>1a -c2.又∵e <0,∴e b -d2<e a -c2.即e a -c2>e b -d2.利用不等式的性质证明不等式,一定要建立在记准、记熟不等式性质的基础之上,如果能由不等式的性质直接进行推理论证,则严格按不等式性质成立的条件论证;否则可以先分析需要证明的不等式的结构,再利用不等式的性质进行逆推,寻找使其成立的充分条件.6.已知a >b >c >d >0,且a b =cd ,求证:a +d >b +c .证明:∵a b =c d ,∴a -b b =c -dd.∴(a -b )d =(c -d )b . 又∵a >b >c >d >0,∴a -b >0,c -d >0,b >d >0且bd >1,∴a -b c -d =b d>1, ∴a -b >c -d ,即a +d >b +c .本课时内容是不等式的基础,是高考的重要考点,主要考查比较大小问题,不等式正误的判断以及利用不等式性质确定代数式的取值范围问题.一般与函数、方程等知识交汇命题.[考题印证](江苏高考)设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.[命题立意]本题主要考查不等式的性质与函数的最大值的概念的综合应用及函数方程思想、转化分类及运算求解能力.[自主尝试]由题设知,实数x ,y 均为正实数,则条件可化为lg 3≤lg x +2lg y ≤lg 8, lg 4≤2lg x -lg y ≤lg 9,令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg 3≤a +2b ≤3lg 2,2lg 2≤2a -b ≤2lg 3.又设t =x 3y4,则lg t =3lg x -4lg y =3a -4b ,令3a -4b =m (a +2b )+n (2a -b ), 解得m =-1,n =2.即lg t =-(a +2b )+2(2a -b )≤-lg 3+4lg 3=lg 27.∴x 3y4的最大值是27. 另解:将4≤x 2y ≤9两边分别平方得,16≤x 4y2≤81,①又由3≤xy 2≤8可得,18≤1xy 2≤13,②由①×②得,2≤x 3y 4≤27,即x 3y4的最大值是27.[答案] 27[对应学生用书P4]一、选择题1.若a <0,-1<b <0,则有( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a解析:∵a <0,-1<b <0,∴ab >0,b -1<0,1-b >0,0<b 2<1, ∴1-b 2>0,ab -a =a (b -1)>0. ∴ab >a .又ab -ab 2=ab (1-b )>0, ∴ab >ab 2.又a -ab 2=a (1-b 2)<0, ∴a <ab 2.故ab >ab 2>a . 答案:D2.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中,正确结论的序号是( ) A .① B .①② C .②③D .①②③解析:由a >b >1,c <0得,1a <1b ,c a >c b;幂函数y =x c(c <0)是减函数,所以a c <b c;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:D3.设角α,β满足-π2<α<β<π2,则α-β的范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0D .-π2<α-β<π2解析:∵-π2<α<β<π2,∴-π2<-β<-α<π2. ∴-π<α-β<β-α<π, 且α-β<0.∴-π<α-β<0. 答案:A4.若a >b >0,则下列各式中恒成立的是( ) A.2a +b a +2b >a b B.b 2+1a 2+1>b 2a2 C .a +1a >b +1bD .a a>b b解析:选取适当的特殊值,若a =2,b =1,可知2a +b a +2b =54,ab =2,由此可知选项A 不成立.利用不等式的性质可知,当a >b >0时,1a <1b ,由此可知,选项C 不恒成立.取a =12,b =14,则a >b >0,则a a =b b ,故选项D 不恒成立.故选B.答案:B 二、填空题5.设a ≥b >0,P =3a 3+2b 3,Q =3a 2b +2ab 2,则P 与Q 的大小关系是________.解析:P -Q =3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ).因为a ≥b >0,所以a -b ≥0,a 2≥b 2>0. 所以3a 2≥3b 2>2b 2,即3a 2-2b 2>0. 从而(3a 2-2b 2)(a -b )≥0,即3a 3+2b 3≥3a 2b +2ab 2,即P ≥Q . 答案:P ≥Q6.若a ,b ∈R ,且a >b ,下列不等式:①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2. 其中不成立的是________.解析:①b a -b -1a -1=ab -b -ab +a a a -1=a -ba a -1.因为a -b >0,a (a -1)符号不确定,①不成立;②取a =2,b =-2,则(a +b )2=0,(b +1)2>0,②不成立;③取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立. 答案:①②③7.有以下四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 其中能使1a <1b成立的有________个条件.解析:①∵b >0,∴1b>0.∵a <0,∴1a <0.∴1a <1b.②∵b <a <0,∴1b >1a .③∵a >0>b ,∴1a>0,1b<0.∴1a >1b.④∵a >b >0,∴1a <1b.综上知,①②④均能使1a <1b成立.答案:38.若1<a <3,-4<b <2,则a -|b |的取值范围是________. 解析:∵-4<b <2,∴0≤|b |<4,∴-4<-|b |≤0 又∵1<a <3,∴-3<a -|b |<3. 答案:(-3,3) 三、解答题9.当a ≠0时,比较(a 2+2a +1)(a 2-2a +1)与(a 2+a +1)(a 2-a +1)的大小.解:∵(a 2+2a +1)(a 2-2a +1) =[(a 2+1)+2a ][(a 2+1)-2a ]=(a 2+1)2-2a 2=a 4+2a 2+1-2a 2=a 4+1,(a 2+a +1)(a 2-a +1)=[(a 2+1)+a ][(a 2+1)-a ]=(a 2+1)2-a 2=a 4+2a 2+1-a 2=a 4+a 2+1,∴(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1)=(a 4+1)-(a 4+a 2+1)=-a 2.∵a ≠0,∴a 2>0,∴-a 2<0,∴(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1). 10.已知a >b >c ,求证:1a -b +1b -c +1c -a >0.证明:原不等式变形为:1a -b +1b -c >1a -c .又∵a >b >c ,∴a -c >a -b >0. 从而有1a -b >1a -c,又∵1b -c >0,∴1a -b +1b -c >1a -c .即1a -b +1b -c +1c -a>0. 11.已知一次函数f (x )=ax +b ,且-1≤f (-1)≤2,-2≤f (2)≤3,求f (3)的取值范围.解:法一:(不等式基本性质)∵⎩⎪⎨⎪⎧-1≤-a +b ≤2, ①-2≤2a +b ≤3. ②又∵f (3)=3a +b =-13(-a +b )+43(2a +b ),∴-103≤f (3)≤133.法二:(线性规划)因为⎩⎪⎨⎪⎧-1≤-a +b ≤2,-2≤2a +b ≤3,所以点(a ,b )所表示的区域如图阴影所示, 又∵f (3)=3a +b ,所以由线性规划知识可知,当(a ,b )在D ⎝ ⎛⎭⎪⎫43,13位置时f (3)取得最大值;在B ⎝ ⎛⎭⎪⎫-43,23位置时f (3)取得最小值,∴-103≤f (3)≤133.法三:(利用斜率公式)∵P 1(-1,f (-1)),P 2(2,f (2)),P 3(3,f (3))三点共线,∴kP 1P 2=kP 1P 3.∴f 2-f -12--1=f 3-f -13--1.∴f (3)=-13f (-1)+43f (2).又∵-1≤f (-1)≤2,-2≤f (2)≤3,∴-103≤f (3)≤133.。
含绝对值不等式优秀教案第一章:绝对值不等式的基本概念1.1 绝对值的概念解释绝对值的概念,即一个数的绝对值是它到原点的距离。
通过图形和实例来展示绝对值的意义。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
解释绝对值不等式的性质,如非负性和对称性。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质介绍绝对值不等式的基本性质,如同号相加、异号相减等。
2.2 绝对值不等式的解法展示如何解绝对值不等式,包括分情况讨论和解不等式的步骤。
通过实例来说明解绝对值不等式的过程。
第三章:含绝对值不等式的应用题3.1 含绝对值不等式的线性应用题介绍如何将含绝对值不等式的线性应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
3.2 含绝对值不等式的几何应用题介绍如何将含绝对值不等式的几何应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
第四章:含绝对值不等式的综合练习4.1 含绝对值不等式的混合运算练习含绝对值不等式的混合运算,包括加减乘除等。
4.2 含绝对值不等式的综合问题解决含绝对值不等式的综合问题,包括几何和实际应用背景。
第五章:含绝对值不等式的提高练习5.1 含绝对值不等式的证明题解决含绝对值不等式的证明题,练习运用逻辑推理和数学证明。
5.2 含绝对值不等式的创新题解决含绝对值不等式的创新题,培养学生的创新思维和解题能力。
第六章:含绝对值不等式的阅读理解6.1 绝对值不等式与实际问题的结合解释如何将绝对值不等式应用于实际问题,如距离、温度等。
通过实例来展示如何从实际问题中抽象出绝对值不等式。
6.2 含绝对值不等式的阅读理解练习提供阅读理解练习题,要求学生从文段中提取关键信息,建立绝对值不等式。
引导学生学会从问题描述中识别和应用绝对值不等式的性质。
第七章:含绝对值不等式的转换与化简7.1 绝对值不等式的转换介绍如何将绝对值不等式转换为其他类型的不等式,如一元一次不等式。
活页作业(三) 绝对值不等式的解法一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5}, 所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。
——教学资料参考参考范本——高中数学第一讲不等式和绝对值不等式二绝对值不等式2绝对值不等式的解法学案含解析新人教A版选修4_5______年______月______日____________________部门1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不等式求解.|ax+b|≤c(c>0)型不等式的解法:先化为-c≤ax+b≤c,再由不等式的性质求出原不等式的解集.不等式|ax+b|≥c(c>0)的解法:先化为ax+b≥c或ax+b≤-c,再进一步利用不等式性质求出原不等式的解集.2.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.|ax+b|≤c与|ax+b|≥c(c>0)型的不等式的解法解下列不等式:(1)|5x-2|≥8;(2)2≤|x-2|≤4.利用|x|>a及|x|<a(a>0)型不等式的解法求解.(1)|5x -2|≥8⇔5x -2≥8或5x -2≤-8⇔x≥2或x≤-, ∴原不等式的解集为.(2)原不等式价于⎩⎨⎧|x-2|≥2, ①|x-2|≤4. ②由①得x -2≤-2,或x -2≥2,∴x≤0或x≥4. 由②得-4≤x-2≤4,∴-2≤x≤6.∴原不等式的解集为{x|-2≤x ≤0或4≤x ≤6}.|ax +b|≥c 和|ax +b|≤c 型不等式的解法:①当c>0时,|ax +b|≥c ⇔ax +b ≥c 或ax +b ≤-c ,|ax +b|≤c ⇔-c ≤ax +b ≤c.②当c =0时,|ax +b|≥c 的解集为R ,|ax +b|<c 的解集为∅. ③当c<0时,|ax +b|≥c 的解集为R ,|ax +b|≤c 的解集为∅.1.解下列不等式:(1)|3-2x|<9;(2)|x -x2-2|>x2-3x -4;(3)|x2-3x -4|>x +1.解:(1)∵|3-2x|<9,∴|2x-3|<9.∴-9<2x -3<9. 即-6<2x<12.∴-3<x<6.∴原不等式的解集为{x|-3<x<6}. (2)∵|x-x2-2|=|x2-x +2|, 而x2-x +2=2+>0,∴|x -x2-2|=|x2-x +2|=x2-x +2.故原不等式等价于x2-x +2>x2-3x -4⇔x>-3.∴原不等式的解集为{x|x>-3}.(3)不等式可转化为x2-3x-4>x+1或x2-3x-4<-x-1,∴x2-4x-5>0或x2-2x-3<0.解得x>5或x<-1或-1<x<3,∴不等式的解集是(5,+∞)∪(-∞,-1)∪(-1,3).2.已知常数a满足-1<a<1,解关于x的不等式:ax+|x+1|≤1.解:若x≥-1,则ax+x+1≤1,即(a+1)x≤0.因为-1<a<1,所以x≤0.又x≥-1,所以-1≤x≤0.若x<-1,则ax-x-1≤1,即(a-1)x≤2.因为-1<a<1,所以x≥.因为-1<a<1,所以-(-1)=<0.所以≤x<-1.综上所述,≤x≤0.故不等式的解集为.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法解不等式|x-3|-|x+1|<1.解该不等式,可采用三种方法:(1)利用绝对值的几何意义;(2)利用各绝对值的零点分段讨论;(3)构造函数,利用函数图象分析求解.法一:在数轴上-1,3,x对应的点分别为A,C,P,而B点对应的实数为,B点到C点的距离与到A点的距离之差为1.由绝对值的几何意义知,当点P 在射线Bx 上(不含B 点)时不等式成立,故不等式的解集为.法二:原不等式⇔①⎩⎨⎧x<-1,或②⎩⎨⎧ -1≤x<3, 或③⎩⎨⎧x≥3,①的解集为∅,②的解集为, ③的解集为{x|x ≥3}.综上所述,原不等式的解集为.法三:将原不等式转化为|x -3|-|x +1|-1<0, 构造函数y =|x -3|-|x +1|-1,即y =x≤-1,-1<x<3,x≥3.作出函数的图象(如下图所示),它是分段函数,函数与x 轴的交点是,由图象可知, 当x>时,有y<0,即|x -3|-|x +1|-1<0, 所以原不等式的解集是.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.3.解不等式|2x-1|+|3x+2|≥8.解:①当x≤-时,|2x-1|+|3x+2|≥8⇔1-2x-(3x+2)≥8⇔-5x≥9⇔x≤-,∴x≤-;②当-<x<时,|2x-1|+|3x+2|≥8⇔1-2x+3x+2≥8⇔x+3≥8⇔x≥5,∴x∈∅;③当x≥时,|2x-1|+|3x+2|≥8⇔5x+1≥8⇔5x≥7⇔x≥,∴x≥.∴原不等式的解集为∪.4.设函数f(x)=+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解:(1)证明:由a>0,得f(x)=+|x-a|≥=+a≥2,所以f(x)≥2.(2)f(3)=+|3-a|.当a>3时,f(3)=a+,由f(3)<5,得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5,得<a≤3.综上所述,a的取值范围是.含绝对值不等式的恒成立问题已知不等式|x+2|-|x+3|>m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为∅,分别求出m的取值范围.解答本题可以先根据绝对值|x-a|的意义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和最小值,再分别写出三种情况下m 的取值范围.法一:因|x+2|-|x+3|的几何意义为数轴上任意一点P(x)与两定点A(-2),B(-3)距离的差.即|x+2|-|x+3|=|PA|-|PB|.又(|PA|-|PB|)max=1,(|PA|-|PB|)min=-1.即-1≤|x+2|-|x+3|≤1.(1)若不等式有解,m只要比|x+2|-|x+3|的最大值小即可,即m<1,m的取值范围为(-∞,1);(2)若不等式的解集为R,即不等式恒成立,m只要比|x+2|-|x +3|的最小值还小,即m<-1,m的取值范围为(-∞,-1);(3)若不等式的解集为∅,m只要不小于|x+2|-|x+3|的最大值即可,即m≥1,m的取值范围为.6.把本例中的“-”改成“+”,即|x+2|+|x+3|>m时,分别求出m的取值范围.解:|x +2|+|x +3|≥|(x+2)-(x +3)|=1,即|x +2|+|x +3|≥1.(1)若不等式有解,m 为任何实数均可,即m∈R; (2)若不等式解集为R ,即m∈(-∞,1); (3)若不等式解集为∅,这样的m 不存在,即m∈∅.课时跟踪检测(五)1.不等式|x +1|>3的解集是( ) A .{x|x<-4或x>2} B .{x|-4<x<2} C .{x|x<-4或x≥2}D .{x|-4≤x<2}解析:选A |x +1|>3,则x +1>3或x +1<-3,因此x<-4或x>2.2.满足不等式|x +1|+|x +2|<5的所有实数解的集合是( ) A .(-3,2)B .(-1,3)C .(-4,1) D.⎝ ⎛⎭⎪⎫-32,72解析:选C |x +1|+|x +2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x +1|+|x +2|<5解集是(-4,1).3.不等式1≤|2x-1|<2的解集为( )A.∪B.∪⎣⎢⎡⎦⎥⎤1,32C.∪D.∪⎣⎢⎡⎭⎪⎫1,32解析:选D 由1≤|2x-1|<2,得1≤2x-1<2或-2<2x -1≤-1,因此-<x≤0或1≤x<.4.若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m 的取值范围是( )A.(-∞,-4)∪(2,+∞) B.(-∞,-4)∪(1,+∞)C.(-4,2) D.解析:选A 由题意知,不等式|x-1|+|x+m|>3恒成立,即函数f(x)=|x-1|+|x+m|的最小值大于3,根据绝对值不等式的性质可得|x-1|+|x+m|≥|(x-1)-(x+m)|=|m+1|,故只要满足|m+1|>3即可,所以m+1>3或m+1<-3,解得m>2或m<-4,故实数m的取值范围是(-∞,-4)∪(2,+∞).5.不等式|x+2|≥|x|的解集是________.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x+2)2≥x2,∴x2+4x+4≥x2,即x≥-1,∴原不等式的解集为{x|x≥-1}.答案:{x|x≥-1}6.不等式|2x-1|-x<1的解集是__________.解析:原不等式等价于|2x-1|<x+1⇔-x-1<2x-1<x+1⇔⇔0<x<2.答案:{x|0<x<2}7.已知函数f(x)=|x+1|+|x-2|-|a2-2a|,若函数f(x)的图象恒在x轴上方,则实数a的取值范围为________.解析:因为|x+1|+|x-2|≥|x+1-(x-2)|=3,所以f(x)的最小值为3-|a2-2a|.由题意,得|a2-2a|<3,解得-1<a<3.答案:(-1,3)8.解不等式:|x2-2x+3|<|3x-1|.解:原不等式⇔(x2-2x+3)2<(3x-1)2⇔<0⇔(x2+x+2)(x2-5x+4)<0⇔x2-5x+4<0(因为x2+x+2恒大于0)⇔1<x<4.所以原不等式的解集是{x|1<x<4}.9.解关于x的不等式|2x-1|<2m-1(m∈R).解:若2m-1<0,即m≤,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤时,原不等式的解集为∅;当m>时,原不等式的解集为{x|1-m<x<m}.10.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y =⎩⎪⎨⎪⎧-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y <0, 所以原不等式的解集是{x|0<x <2}. (2)当x∈时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3, 所以x≥a-2对x∈都成立. 故-≥a-2,即a≤. 从而a 的取值范围是.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(湖南高考)若实数a ,b 满足+=,则ab 的最小值为( ) A. B .2 C .2D .4解析:选C 由+=,知a >0,b >0, 所以=+≥2,即ab≥2,当且仅当即a =,b =2时取“=”,所以ab 的最小值为2. 2.(重庆高考)设a ,b>0,a +b =5,则+的最大值为________. 解析:令t =+,则t2=a +1+b +3+2=9+2≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =,b =. ∴tmax ==3. 答案:3 23.(重庆高考)若函数f(x)=|x +1|+2|x -a|的最小值为5,则实数a =________.解析:由于f(x)=|x +1|+2|x -a|,当a>-1时,f(x)=⎩⎨⎧作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)=5,即a +1=5,∴a=4.同理,当a≤-1时,-a-1=5,∴a=-6.答案:-6或44.(全国乙卷)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f(x)=错误!故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5.故f(x)>1的解集为{x|1<x<3},f(x)<-1的解集为.所以|f(x)|>1的解集为.5.(江苏高考)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.证明:因为|x-1|<,|y-2|<,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×+=a.6.(全国丙卷)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,即+≥.又min=,所以≥,解得a≥2.所以a的取值范围是“a+c>b+d”是“a>b 且c>d”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>b且c>d.A基本不等式的应用利用基本不等式求最值问题一般有两种类型:①和为定值时,积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.已知x,y,z∈R+,x-2y+3z=0,则的最小值为________.由x-2y+3z=0,得y=,则y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z时,等号成立.3设a,b,c为正实数,求证:+++abc≥2.因为a,b,c为正实数,由平均不等式可得++≥3.即++≥,当且仅当a=b=c时,等号成立.所以+++abc≥+abc,而+abc≥2=2.所以+++abc≥2,当且仅当abc=时,等号成立.含绝对值的不等式的解法1.公式法|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x);|f(x)|<g(x)⇔-g(x)<f(x)<g(x).2.平方法|f(x)|>|g(x)|⇔2>2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.解下列关于x的不等式:(1)|x+1|>|x-3|;(2)|x-2|-|2x+5|>2x.(1)法一:|x+1|>|x-3|,两边平方得(x+1)2>(x-3)2,∴8x>8.∴x>1.∴原不等式的解集为{x|x>1}.法二:分段讨论:当x≤-1时,有-x-1>-x+3,此时x∈∅;当-1<x≤3时,有x+1>-x+3,即x>1,此时1<x≤3;当x>3时,有x+1>x-3成立,∴x>3.∴原不等式的解集为{x|x>1}.(2)分段讨论:①当x<-时,原不等式变形为2-x+2x+5>2x,解得x<7,∴原不等式的解集为.②当-≤x≤2时,原不等式变形为2-x-2x-5>2x,解得x<-.∴原不等式的解集为.③当x>2时,原不等式变形为x-2-2x-5>2x,解得x<-,∴原不等式无解.综上可得,原不等式的解集为.不等式的恒成立问题对于不等式恒成立求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f(x)≤a ⇔f(x)max≤a,f(x)≥a ⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简便的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.设有关于x 的不等式lg(|x +3|+|x -7|)>a. (1)当a =1时, 解此不等式.(2)当a 为何值时,此不等式的解集是R? (1)当a =1时, lg(|x +3|+|x -7|)>1, ⇔|x +3|+|x -7|>10,⇔或⎩⎨⎧ -3<x<7,10>10或⎩⎨⎧x≤-3,4-2x>10,⇔x>7或x<-3.∴不等式的解集为{x|x<-3或x>7}. (2)设f(x)=|x +3|+|x -7|, 则有f(x)≥|(x+3)-(x -7)|=10, 当且仅当(x +3)(x -7)≤0,即-3≤x≤7时,f(x)取得最小值10.∴lg(|x+3|+|x-7|)≥1.要使lg(|x+3|+|x-7|)>a的解集为R,只要a<1.。
选修4-5学案 1.2.1绝对值不等式 姓名 ☆学习目标: 1.对深化绝对值的定义及其几何意义的理解和掌握; 2. 理解关于绝对值三角不等式并会简单应用 ☻知识情景:1.定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.2. 定理2(基本不等式) 如果+∈R b a ,,那么2a b +≥当且仅当a b =时, 等号成立.讨论: 10. 你能解析基本不等式的几何意义吗?20. 怎样用语言表述基本不等式?30. 在应用基本不等式求最值时要注意什么?推论10. 两个正数的算术平均数2b a +, 几何平均数ab ,平方平均数 , 调和平均数b a ab +2, 从小到大的排列是:3.定理3 如果,,a b c R +∈,那么3a b c ++≥当且仅当a b c ==时, 等号成立. 定理3的国语表述: 推论10. 对于n 个正数12,,,n a a a , 它们的即 当且仅当a b c ==时, 等号成立. ☆探究:许多不等关系都涉及到距离的长短、面积或体积的大小、重量,等等,它们都要通过 非负数来表示.因此,研究含有绝对值的不等式具有重要打的意义.☻建构新知:1.绝对值的定义:a R ∀∈,||a ⎧⎪=⎨⎪⎩2. 绝对值的几何意义:10. 实数a 的绝对值||a ,表示数轴上坐标为a 的点A20. ∀两个实数,a b ,它们在数轴上对应的点分别为,A B ,那么||a b -的几何意义是 例1 设函数()14f x x x =+--.()1解不等式()2f x >;()2求函数()y f x =的最值.2. 绝对值三角不等式:探究||a ,||b ,||a b -之间的关系.①0a b ⋅>时,如下图, 容易得:||||||a b a b ++.②0a b ⋅<时,如图, 容易得:||||||a b a b ++.③0a b ⋅=时,显然有:||||||a b a b ++. 综上,得定理1 如果,a b R ∈, 那么||||||a b a b ++. 当且仅当 时, 等号成立.在上面不等式中,用向量,a b 分别替换实数,a b , 则当,a b 不共线时, 由向量加法三角形法则: 向量,a b ,a b + 构成三角形, 因此有||||||a b a b ++ 它的几何意义就是:定理1的证明:定理2 如果,,a b c R ∈, 那么||||||a c a b b c --+-. 当且仅当 时, 等号成立.☆案例学习:例2 (1),a b R ∈证明b a b a -≥+,(2)已知 2,2cb yc a x <-<-,求证 .)()(c b a y x <+-+。
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
1.1 实数大小的比较 1.2 不等式的性质学习目标:1.理解实数大小与实数运算间的关系,会用作差(商)法比较大小.(重点)2.理解并掌握不等式的性质.(重点、易错易混点)3.能用不等式的性质解决一些简单的问题.(难点)教材整理1 实数大小的比较阅读教材P 1~P 3“思考交流”以上部分,完成下列问题.1.实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.2.两实数大小与运算间的关系(1)a >b ⇔a -b >0;a <b ⇔a -b <0;a =b ⇔a -b =0. (2)当a >0,b >0时,ab >1⇔a >b ,a b <1⇔a <b ;a b=1⇔a =b .判断(正确的打“√”,错误的打“×”) (1)若a b>1,则a >b . ( ) (2)∀x ∈R ,x 2>2x .( ) (3)若a >b >c 且a +b +c =0,则a >0,c <0. ( )[解析] (1)× 因为b 的正负不确定.(2)× 因为x 2-2x =x (x -2),其正负随x 的范围的变化而改变. (3)√ 因为a >b ,a >c ,所以2a >b +c ,即3a >a +b +c =0,所以a >0,又因为c <a ,c <b , ∴3c <a +b +c =0,即c <0. [答案] (1)× (2)× (3)√ 教材整理2 不等式的性质阅读教材P 1~P 3“思考交流”以上部分,完成下列问题.填空(填不等号):(1)若a >b +c ,则a -b ________c . (2)若a >b >0,则1a ________1b.(3)若a >b ,c <d ,则a -c ________b -d . (4)若a >b >0,0<c <d ,则a c ________b d. [解析] 利用不等式的性质可得. [答案] (1)> (2)< (3)> (4)>(2)若m >0,试比较m m与2m的大小.[精彩点拨] (1)只需考查两者差同0的大小关系;(2)注意到2m>0,可求商比较大小,但要注意到用函数的性质. [自主解答] (1)x 3+3-3x 2-x =x 2(x -3)-(x -3) =(x -3)(x +1)(x -1).∵x >3,∴(x -3)(x +1)(x -1)>0, ∴x 3+3>3x 2+x . (2)m m 2m =⎝ ⎛⎭⎪⎫m 2m, 当m =2时,⎝ ⎛⎭⎪⎫m 2m=1,此时m m =2m,当0<m <2时,0<m2<1,⎝ ⎛⎭⎪⎫m 2m<1,∴m m <2m.当m >2时,m2>1,⎝ ⎛⎭⎪⎫m 2m>1,∴m m >2m.比较大小的常用方法及步骤1.求差法:a ≥b ⇔a -b ≥0,a ≤b ⇔a -b ≤0. 一般步骤是:作差→变形→判号→定论.变形是作差法的关键,配方和因式分解是常用的变形手段.2.求商法:当a >0,b >0时,把比较a ,b 的大小转化为比较ab与1的大小关系,此即为作商比较法.理论依据是不等式的性质:若a >0,b >0,则a b ≥1⇔a ≥b ,a b≤1⇔a ≤b . 一般步骤为:作商→变形→与1比较大小→定论.1.已知x ,y 均为正数,设m =1x +1y ,n =4x +y ,试比较m 与n 的大小.[解] m -n =1x +1y -4x +y=x +y xy -4x +y =(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ),∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴m -n ≥0,即m ≥n .(1)若a >b ,则ac <bc ; (2)若ac 2>bc 2,则a >b ; (3)若a <b <0,则a 2>ab >b 2; (4)若a <b <0,则|a |>|b |; (5)若c >a >b >0,则ac -a >bc -b.[精彩点拨] 本题考查不等式性质的应用及逻辑推理能力.解答此题需要依据实数的基本性质,实数的符号的运算法则以及不等式性质,然后经过合理逻辑推理即可判断.[自主解答] (1)由于c 的符号未知,因而不能判断ac ,bc 的大小关系,故该命题是假命题.(2)由ac 2>bc 2知c ≠0,而c 2>0, ∴a >b ,故该命题是真命题.(3)⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ;又⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,故该命题是真命题.(4)两个负实数,较小的离原点远,其绝对值反而大,故该命题是真命题. (5)⎭⎪⎬⎪⎫a >b >0⇒-a <-b <0,c >a >b >0⇒0<c -a <c -b⇒⎭⎪⎬⎪⎫1c -a >1c -b >0,a >b >0⇒a c -a >b c -b ,故该命题是真命题.1.判断命题的真假往往用举反例予以否定,或从条件入手,看是否推出与结论一致的结论.2.运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能想当然随意捏造性质.2.判断下列命题是否正确,并说明理由. (1)若a >b ,则ac 2>bc 2;(2)若a c 2>b c2,则a >b ;(3)若a >b ,ab ≠0,则1a <1b;(4)若a >b ,c >d ,则ac >bd .[解] (1)错误.当c =0时不成立.(2)正确.∵c 2≠0且c 2>0,在a c 2>b c2两边同乘以c 2,∴a >b . (3)错误.a >b ⇔1a <1b成立的条件是ab >0.(4)错误.a >b ,c >d ⇒/ac >bd ,例如当a ,b ,c ,d 为负数时不成立.1.甲同学认为a >b ⇔1a <1b ,乙同学认为a >b >0⇔1a <1b ,丙同学认为a >b ,ab >0⇔1a<1b,请你思考一下,他们谁说得正确?[提示] 甲说得不正确.当a >0,b <0时不成立;乙说得是正确的,但不全面,当0>a >b时也有1a <1b;丙说得非常正确.2.根据60<x <84,28<y <33,如何求得x -y 和x y的取值范围,直接用x 的取值范围去减或除以y 的取值范围可以吗?[提示] 不能直接用x 的取值范围去减或除以y 的取值范围,应严格利用不等式的基本性质去求得取值范围;其次在有些题目中,还要注意整体代换的思想,即弄清要求的与已知的“取值范围”间的联系.正确解法应是:x -y =x +(-y ),所以需先求出-y 的取值范围;x y =x ×1y ,所以需先求出1y的取值范围. ∵28<y <33,∴-33<-y <-28,133<1y <128.又60<x <84,∴27<x -y <56,6033<x y <8428,即2011<x y<3. 【例3】 设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,在求f (-2)的取值范围时有如下解法:由⎩⎪⎨⎪⎧1≤f (-1)≤2,2≤f (1)≤4,得⎩⎪⎨⎪⎧32≤a ≤3,0≤b ≤32.∴3≤f (-2)=4a -2b ≤12. 上述解法是否正确?为什么?[精彩点拨] f (-1)=a -b ,f (1)=a +b ,而a +b 与a -b 中的a ,b ,不是独立的,是相互制约的.本题错在多次运用同向不等式相加(单向性)这一性质上,导致f (-2)的范围扩大.因此需要将f (-2)用a -b 与a +b 整体表示.[自主解答] 不正确. 设f (-2)=mf (-1)+nf (1), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a -(m -n )b .于是⎩⎪⎨⎪⎧m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 而1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.利用不等式的性质证明不等式,一定要建立在记准、记熟不等式性质的基础之上,如果能由不等式的性质直接进行推理论证,则严格按不等式性质成立的条件论证;否则可以先分析需要证明的不等式的结构,再利用不等式的性质进行逆推,寻找使其成立的充分条件.3.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2.[证明] ∵c <d <0,∴-c >-d >0, ∵a >b >0,∴a -c >b -d >0.(*) 由(*)式知(a -c )2>(b -d )2>0, ∴1(b -d )2>1(a -c )2. 又∵e <0,∴e (b -d )2<e(a -c )2.即e (a -c )2>e(b -d )2.1.设a ∈R ,则下面式子正确的是( ) A .3a >2a B .a 2<2a C.1a<aD .3-2a >1-2a[答案] D2.已知m ,n ∈R ,则1m >1n成立的一个充要条件是( )A .m >0>nB .n >m >0C .m <n <0D .mn (m -n )<0[解析] ∵1m >1n ⇔1m -1n >0⇔n -mmn>0⇔mn (n -m )>0⇔mn (m -n )<0.[答案] D3.若6≤x ≤13,2≤y ≤7,则x -y 的取值范围是________. [解析] ∵2≤y ≤7,∴-7≤-y ≤-2,又∵6≤x ≤13, 所以-7+6≤x -y ≤-2+13,即-1≤x -y ≤11. [答案] [-1,11]4.已知a <b <0,那么下列不等式成立的是________.(填序号) ①1a <1b ; ②ab >b 2; ③b a >a b ; ④a +b b<1.[解析] ∵a <b <0,∴1a >1b,①不成立;由b <0,a <b ,∴ab >b 2,②成立;又a <b<0,∴0<b a <1,a b >1,因此b a >a b 不成立;a +b b =ab+1<1不成立,即①,③,④不正确,只有②成立.[答案] ②5.已知一次函数f (x )=ax +b ,且-1≤f (-1)≤2,-2≤f (2)≤3,求f (3)的取值范围.[解] ∵⎩⎪⎨⎪⎧-1≤-a +b ≤2,-2≤2a +b ≤3.又∵f (3)=3a +b =-13(-a +b )+43(2a +b ),∴-103≤f (3)≤133.。