解析几何:直线与圆、圆与圆的位置关系
- 格式:ppt
- 大小:3.59 MB
- 文档页数:42
解析几何中的直线与圆的位置关系直线与圆的位置关系是解析几何中的重要概念之一。
在空间几何中,直线和圆可以有多种相互位置的情况,包括相离、相切和相交。
本文将对直线与圆的不同位置关系进行解析和讨论。
一、直线和圆相离的情况当一条直线与一个圆没有任何交点时,我们称直线和圆相离。
此时,直线与圆之间的最短距离等于两者之间的半径差。
直线作为一个无限延伸的曲线,在与圆相离的情况下,可能与圆的外部或内部都不存在交点。
二、直线和圆相切的情况直线和圆相切意味着它们只有一个公共点,即相切点。
在这种情况下,直线与圆的切点即为它们的交点,且直线垂直于通过切点的半径。
直线与圆相切的情况分为两种,一种是直线与圆外切,另一种是直线与圆内切。
1. 直线与圆外切当一条直线与一个圆外切时,直线与圆相交于切点。
此时,直线与圆的半径垂直并且共线,且直线和圆之间的最短距离等于圆的半径。
直线从切点开始离开圆,没有任何交点。
外切情况下,直线与圆的位置关系可以通过切线与圆的关系来理解。
2. 直线与圆内切直线与圆内切意味着直线与圆只有一个公共点,并且直线在此切点处与圆的内部相切。
如外切情况一样,直线与圆内切时,直线与通过切点的半径垂直并且共线。
直线从切点开始进入圆内,没有任何其他交点。
三、直线和圆相交的情况直线和圆可能有两个交点或者无穷多个交点。
直线与圆相交的情况分为两种,一种是直线穿过圆内部,另一种是直线截取了圆的一部分。
1. 直线穿过圆内部当一条直线穿过一个圆的内部时,直线与圆的交点有两个。
此时直线与圆的位置关系是直线既与圆的内部相交,又与圆的外部相交。
直线穿过圆的内部时,直线与圆的交点处于圆的两侧。
2. 直线截取圆的一部分当一条直线截取了一个圆的一部分时,直线与圆的交点有两个。
此时直线与圆的位置关系是直线既与圆的内部相交,又与圆的外部相交。
直线截取圆的一部分时,直线的两个交点分别位于圆上,相交点将圆分成了两部分。
总结:直线和圆的位置关系在解析几何中是一个重要的概念。
解析几何中的直线与圆解析几何是几何学的分支之一,它将代数工具引入几何问题的研究中,通过坐标系的建立以及运用代数的方法,使几何问题能够用代数的语言来描述和解决。
在解析几何中,直线和圆是两个基本的几何元素,它们之间的关系和性质是解析几何的重要内容之一。
本文将针对直线和圆的关系进行解析几何分析。
一、直线与圆的位置关系在解析几何中,直线与圆的位置关系有三种情况:直线与圆相切、直线穿过圆、直线与圆不相交。
1. 直线与圆相切当一条直线与圆相切时,直线与圆的切点是直线上距离圆心最近的点。
设直线的方程为ax+by+c=0,圆的方程为(x - p)^2 + (y - q)^2 = r^2,其中(a,b,c,p,q,r为已知常数),则直线与圆相切的条件是:|ap+bq+c|/√(a^2+b^2) = r。
2. 直线穿过圆当一条直线穿过圆,即直线与圆有两个交点。
设直线的方程为ax+by+c=0,圆的方程为(x - p)^2 + (y - q)^2 = r^2,则直线穿过圆的条件是:(ap+bq+c)^2 > (a^2+b^2)(p^2+q^2-r^2)。
3. 直线与圆不相交当直线与圆不相交时,有两种情况:直线在圆的外部,直线在圆的内部。
设直线的方程为ax+by+c=0,圆的方程为(x - p)^2 + (y - q)^2 =r^2,则当(ap+bq+c)^2 < (a^2+b^2)(p^2+q^2-r^2) 时,直线在圆的外部;当 (ap+bq+c)^2 > (a^2+b^2)(p^2+q^2-r^2) 时,直线在圆的内部。
二、直线与圆的运算在解析几何中,直线和圆的运算包括直线与直线的位置关系、直线与直线的交点、直线与圆的交点等。
1. 直线与直线的位置关系两条直线的位置关系可以通过它们的方程来判断。
设直线1的方程为a1x + b1y + c1 = 0,直线2的方程为a2x + b2y + c2 = 0,则直线1与直线2的位置关系有以下几种情况:相交(斜交或垂直交)、平行、重合。
辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。
位置关系第一课时直线与圆的位置关系高效测评北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2的全部内容。
与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.直线2x-y+3=0与圆C:x2+(y-1)2=5的位置关系是( )A.相交B.相切C.相离D.不确定解析: 圆C:x2+(y-1)2=5的圆心C为(0,1),半径为错误!.由圆心(0,1)到直线2x-y+3=0的距离:d=错误!=错误!错误!<错误!.∴直线和圆相交.答案:A2.若圆心在x轴上、半径为错误!的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.(x-5)2+y2=5 B.(x+错误!)2+y2=5C.(x-5)2+y2=5 D.(x+5)2+y2=5解析:设圆心为(x0,0),则由题意知圆心到直线x+2y=0的距离为错误!,故有错误!=错误!,∴|x0|=5.又圆心在y轴左侧,故x0=-5.∴圆的方程为(x+5)2+y2=5,选D。
答案: D3.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( ) A.x+y-1=0 B.2x+y-3=0C.2x-y-5=0 D.x-y-3=0解析: 圆心是点C(1,0),由CP⊥AB,得k AB=1,所以直线AB的方程为x-y-3=0,故选D。
42+12=17. ∵3-2<d <3+2、 ∴两圆相交.]3.圆Q :x 2+y 2-4x =0在点P (1、3)处的切线方程为______. x -3y +2=0 [因为点P (1、3)是圆Q :x 2+y 2-4x =0上的一点、 故在点P 处的切线方程为x -3y +2=0.]4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.22 [由⎩⎨⎧x2+y2-4=0,x2+y2-4x +4y -12=0,得x -y +2=0.由于x 2+y 2-4=0的圆心为(0、0)、半径r =2、且圆心(0、0)到直线x -y +2=0的距离d =|0-0+2|2=2、所以公共弦长为2r2-d2=24-2=22.](对应学生用书第148页)考点1 直线与圆的位置关系A .(-∞、+∞)B .(-∞、0)C .(0、+∞)D .(-∞、0)∪(0、+∞)(3)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点的个数为( )A .1B .2C .3D .4(1)A (2)D (3)C [(1)法一:(代数法)由⎩⎨⎧mx -y +1-m =0,x2+(y -1)2=5,消去y 、整理得(1+m 2)x 2-2m 2x +m 2-5=0、 因为Δ=16m 2+20>0、所以直线l 与圆相交. 法二:(几何法)∵圆心(0、1)到直线l 的距离d =|m|m2+1<1<5.故直线l 与圆相交.法三:(点与圆的位置关系法)直线l :mx -y +1-m =0过定点(1、1)、∵点(1、1)在圆C :x 2+(y -1)2=5的内部、∴直线l 与圆C 相交.(2)圆的标准方程为(x -1)2+(y -1)2=1、圆心C (1、1)、半径r =1.因为直线与圆相交、所以d =|1+m -2-m|1+m2<r =1.解得m >0或m <0.故选D.(3)如图所示、因为圆心到直线的距离为|9+12-11|5=2、又因为圆的半径为3、所以直线与圆相交、故圆上到直线的距离为1的点有3个.](1)已知直线与圆的位置关系求参数值或取值范围、就是利用d=r、d>r或d<r建立关于参数的等式或不等式求解;(2)圆上的点到直线距离为定值的动点个数问题多借助数形结合、转化为点到直线的距离求解.1.已知点M(a、b)在圆O:x2+y2=1外、则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定B[因为M(a、b)在圆O:x2+y2=1外、所以a2+b2>1、而圆心O到直线ax+by=1的距离d=1a2+b2<1.所以直线与圆相交.]2.若直线l:x+y=m与曲线C:y=1-x2有且只有两个公共点、则m的取值范围是________.[1、2)[画出图象如图、当直线l经过点A、B时、m=1、此时直线l与曲线y=1-x2有两个公共点;当直线l与曲线相切时、m=2、因此当1≤m<2时、直线l:x+y=m与曲线y=1-x2有且只有两个公共点.]考点2圆与圆的位置关系C .外切D .相离B [由⎩⎨⎧x2+y2-2ay =0,x +y =0,得两交点为(0、0)、(-a 、a ). ∵圆M 截直线所得线段长度为22、∴a2+(-a )2=22.又a >0、∴a =2.∴圆M 的方程为x 2+y 2-4y =0、即x 2+(y -2)2=4、圆心M (0、2)、半径r 1=2.又圆N :(x -1)2+(y -1)2=1、圆心N (1、1)、半径r 2=1、∴|MN |=(0-1)2+(2-1)2=2.∵r 1-r 2=1、r 1+r 2=3、1<|MN |<3、∴两圆相交.]2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切、则m =( )A .21B .19C .9D .-11C [圆C 1的圆心为C 1(0、0)、半径r 1=1、因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m 、所以圆C 2的圆心为C 2(3、4)、半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2、即1+25-m =5、解得m =9、故选C.]考点3 直线、圆的综合问题切线问题(1)圆的切线问题的处理要抓住圆心到直线的距离等于半径、从而建立关系解决问题;(2)过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条、若仅求得一条、除了考虑运算过程是否正确外、还要考虑斜率不存在的情况、以防漏解.由直线y=x+1上的动点P向圆C:(x-3)2+y2=1引切线、则切线长的最小值为()A.1 B.22C.7D.3C[如图、切线长|PM|=|PC|2-1、显然当|PC|为C到直线y=x+1的距离即3+12=22时|PM|最小为7、故选C.]D [将圆的方程化为标准方程得(x -2)2+(y +1)2=5、圆心坐标为F (2、-1)、半径r =5、如图、显然过点E 的最长弦为过点E 的直径、即|AC |=25、而过点E 的最短弦为垂直于EF的弦、|EF |=(2-1)2+(-1-0)2=2、|BD |=2r2-|EF|2=23、∴S 四边形ABCD =12|AC |×|BD |=215.]直线与圆的综合问题直线与圆的综合问题的求解策略(1)利用解析几何的基本思想方法(即几何问题代数化)、把它转化为代数问题、通过代数的计算、使问题得到解决.所以当点N 为(4、0)时、能使得∠ANM =∠BNM 总成立.本例是探索性问题、求解的关键是把几何问题代数化、即先把条件“x 轴平分∠ANB ”等价转化为“直线斜率的关系:k AN =-k BN ”、然后借助方程思想求解.[教师备选例题]如图、在平面直角坐标系xOy 中、已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2、4).(1)设圆N 与x 轴相切、与圆M 外切、且圆心N 在直线x =6上、求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点、且BC =OA 、求直线l 的方程.[解] (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25、圆心M (6、7)、半径r =5、由题意、设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0).且(6-6)2+(b -7)2=b +5.解得b =1、∴圆N 的标准方程为(x -6)2+(y -1)2=1.,(2)∵k OA =2、∴可设l 的方程为y =2x +m 、即2x -y +m =0.又BC =OA =22+42=25.由题意、圆M 的圆心M (6、7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫BC 22=25-5=25.。
直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。
三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。
法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。
法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。
分析:作出图形后进⾏观察,以找到解决问题的思路。
分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。
解:因P点在圆上,故可求切线L的⽅程为x+2y=5。
高二数学点与圆、直线与圆以及圆与圆的位置关系【本讲主要内容】点与圆、直线与圆以及圆与圆的位置关系【知识掌握】 【知识点精析】1. 点与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,点M (x 0,y 0)到圆心的距离为d ,则有: (1)d >r 点M 在圆外; (2)d =r 点M 在圆上; (3)d <r 点M 在圆内。
2. 直线与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,直线l 的方程为Ax +By +C =0,圆心(a ,b )到直线l 的距离为d ,⎩⎨⎧=++=-+-0C By Ax r )b y ()a x (222消去y 得x 的一元二次方程判别式为△,则有: (1)d <r 直线与圆相交; (2)d =r 直线与圆相切; (3)d>r 直线与圆相离,即几何特征; 或(1)△>0直线与圆相交; (2)△=0直线与圆相切; (3)△<0直线与圆相离,即代数特征。
3. 圆与圆的位置关系 设圆C 1:(x -a )2+(y -b )2=r 2和圆C 2:(x -m )2+(y -n )2=k 2(k≥r ),且设两圆圆心距为d ,则有: (1)d =k +r 两圆外切; (2)d =k -r 两圆内切; (3)d >k +r 两圆外离; (4)d <k -r 两圆内含; (5)k -r <d <k +r 两圆相交。
4. 其他(1)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则此点的切线方程为x 0x +y 0y =r 2 ②圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2(2)相交两圆的公共弦所在直线方程:设圆C 1∶x 2+y 2+D 1x +E 1y +F 1=0和圆C 2∶x 2+y 2+D 2x +E 2y +F 2=0,若两圆相交,则过两圆交点的直线方程为(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0。