57第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系
- 格式:docx
- 大小:204.10 KB
- 文档页数:6
§9.4 直线与圆、圆与圆的位置关系最新考纲 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有相离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(3)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三易错自纠5.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]答案 D解析圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d=|2-1+m|2,若直线与圆恒有公共点,则|2-1+m|2≤2,解得-22-1≤m≤22-1,故选D.6.(2018·石家庄模拟)设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.4 2 C.8 D.8 2答案 C解析因为圆C1,C2和两坐标轴相切,且都过点(4,1),所以两圆都在第一象限内,设圆心坐标为(a,a),则|a|=(a-4)2+(a-1)2,解得a=5+22或a=5-22,可取C1(5+22,5+22),C2(5-22,5-22),故|C1C2|=(42)2+(42)2=8,故选C.7.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0,当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.题型一 直线与圆的位置关系命题点1 位置关系的判断例1 (2018·贵州黔东南州联考)在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是( ) A .相切 B .相交 C .相离 D .不确定答案 A解析 因为a sin A +b sin B -c sin C =0, 所以由正弦定理得a 2+b 2-c 2=0.故圆心C (0,0)到直线l :ax +by +c =0的距离d =|c |a 2+b 2=1=r ,故圆C :x 2+y 2=1与直线l :ax +by +c =0相切,故选A. 命题点2 弦长问题例2 已知直线:12x -5y =3与圆x 2+y 2-6x -8y +16=0相交于A ,B 两点,则|AB |=________. 答案 4 2解析 把圆的方程化成标准方程为(x -3)2+(y -4)2=9,所以圆心坐标为(3,4),半径r =3,所以圆心到直线12x -5y =3的距离d =|12×3-5×4-3|122+(-5)2=1,则|AB |=2r 2-d 2=4 2.命题点3 切线问题例3 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52,∴切线方程为2x +y ±52=0.(3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 (1)判断直线与圆的位置关系的常见方法 ①几何法:利用d 与r 的关系. ②代数法:联立方程之后利用Δ判断.③点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为________. 答案 相交解析 直线2tx -y -2-2t =0恒过点(1,-2), ∵12+(-2)2-2×1+4×(-2)=-5<0, ∴点(1,-2)在圆x 2+y 2-2x +4y =0内,直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交.(2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 答案 2 2解析 设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-(2)2=2 2.(3)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.题型二 圆与圆的位置关系命题点1 位置关系的判断例4 分别求当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交和相切.解 将两圆的一般方程化为标准方程,得C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k , 则圆C 1的圆心为C 1(-2,3),半径r 1=1; 圆C 2的圆心为C 2(1,7),半径r 2=50-k ,k <50.从而|C 1C 2|=(-2-1)2+(3-7)2=5.当|50-k -1|<5<50-k +1,即4<50-k <6,即14<k <34时,两圆相交. 当1+50-k =5,即k =34时,两圆外切;当|50-k -1|=5,即k =14时,两圆内切.所以当k =14或k =34时,两圆相切. 命题点2 公共弦问题例5 已知圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.(1)证明 由题意得,圆C 1和圆C 2一般方程化为标准方程,得(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=16,则圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2, ∴圆C 1和C 2相交.(2)解 圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0. 圆心C 2(5,6)到直线4x +3y -23=0的距离 d =|20+18-23|16+9=3,故公共弦长为216-9=27.思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察. (2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2(a >0), ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.(2)圆x 2+y 2+4x -4y -1=0与圆x 2+y 2+2x -13=0相交于P ,Q 两点,则直线PQ 的方程为______________. 答案 x -2y +6=0解析 两个圆的方程两端相减,可得2x -4y +12=0. 即x -2y +6=0.1.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值范围是( ) A .(-∞,1) B .(121,+∞) C .[1,121] D .(1,121)答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为 (x +3)2+(y -4)2=36. 圆心距为d =(0+3)2+(0-4)2=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.2.直线x -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长为( ) A.30 B.532 C .4 2 D .3 3答案 A解析 圆(x -1)2+(y -3)2=10的圆心坐标为(1,3),半径r =10,圆心(1,3)到直线x -3y +3=0的距离d =|1-9+3|10=510,故弦|AB |=210-2510=30,故选A.3.已知直线l :x cos α+y sin α=2(α∈R ),圆C :x 2+y 2+2x cos θ+2y sin θ=0(θ∈R ),则直线l 与圆C 的位置关系是( )A .相交B .相切C .相离D .与α,θ有关答案 D解析 圆C :x 2+y 2+2x cos θ+2y sin θ=0(θ∈R ),即(x +cos θ)2+(y +sin θ)2=1(θ∈R ),圆心C 的坐标为(-cos θ,-sin θ),半径为r =1.圆心C 到直线l :x cos α+y sin α=2(α∈R )的距离d =|-cos θcos α-sin θsin α-2|cos 2α+sin 2α=2+cos(θ-α).当cos(θ-α)=-1时,d =r ,直线l 和圆C 相切; 当-1<cos(θ-α)≤1时,d >r ,直线l 和圆C 相离,故选D.4.(2018·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-14答案 B解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.5.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.由题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).6.(2018·东北三省联考)直线x +2y +m =0(m >0)与⊙O :x 2+y 2=5交于A ,B 两点,若|OA →+OB →|>2|AB →|,则m 的取值范围是( )A .(5,25)B .(25,5)C .(5,5)D .(2,5)答案 B解析 ∵直线x +2y +m =0与⊙O :x 2+y 2=5交于相异两点A ,B ,∴O 点到直线x +2y +m =0的距离d < 5.记OA →+OB →=OD →,则四边形OADB 是菱形,且|OD →|=2d . ∵|OA →+OB →|>2|AB →|,∴2d >2|AB →|, 即d >|AB →|=25-d 2,解得d >2.又d <5,∴2<d <5,即2<|m |5< 5. 又m >0,解得m ∈(25,5).7.(2016·全国Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________. 答案 4解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,解得x 1=-3,y 1=3;x 2=0,y 2=23, ∴A (-3,3),B (0,23).过A ,B 作l 的垂线方程分别为 y -3=-3(x +3),y -23=-3x ,令y =0, 则x C =-2,x D =2,∴|CD |=2-(-2)=4.8.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|P A |=|PB |= 3.∴△POA 为直角三角形, 其中|OA |=1,|AP |=3,则|OP |=2,∴∠OP A =30°,∴∠APB =60°. ∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32.9.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2,整理得3k 2-4k ≤0,解得0≤k ≤43.故k 的最大值是43.10.(2018·成都模拟)已知圆C :(x -3)2+(y -4)2=25,圆C 上的点到直线l :3x +4y +m =0(m <0)的最短距离为1,若点N (a ,b )在直线l 上位于第一象限的部分,则1a +1b 的最小值为____________. 答案7+4355解析 圆C :(x -3)2+(y -4)2=25,圆心坐标(3,4),半径为5,因为圆C 上的点到直线l :3x +4y +m =0(m <0)的最短距离为1,则直线l 与圆C 相离,设圆心到直线的距离为d ,则d -r =1,可得|9+16+m |9+16=6,解得m =-55或m =5(舍去).因为点N (a ,b )在直线l 上位于第一象限的部分, 所以3a +4b =55,a >0,b >0. 则1a +1b =155⎝⎛⎭⎫1a +1b (3a +4b )=155⎝⎛⎭⎫7+4b a +3a b ≥155⎝⎛⎭⎫7+24b a ·3a b =7+4355, 当且仅当a =-55+11033,b =55-5532时取等号.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k , 得l 的方程为y -3=k (x -1), 即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34.∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0. (2)设P (x ,y ),则|PM |2=|PC |2-|MC |2 =(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0). 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1. (2)∵k OA =2,∴可设l 的方程为y =2x +m ,即2x -y +m =0.又BC =OA =22+42=2 5.由题意,圆M 的圆心M (6,7)到直线l 的距离为d = 52-⎝⎛⎭⎫BC 22=25-5=2 5.即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.∴直线l 的方程为y =2x +5或y =2x -15.(3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴PQ ≤2r =10. ∴TA =PQ ≤10,即(t -2)2+42≤10,解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221].13.(2018·贵阳第一中学月考)已知直线l :(m +2)x +(m -1)y +4-4m =0上总存在点M ,使得过M 点作的圆C :x 2+y 2+2x -4y +3=0的两条切线互相垂直,则实数m 的取值范围是( )A .m ≤1或m ≥2B .2≤m ≤8C .-2≤m ≤10D .m ≤-2或m ≥8答案 C 解析 如图,设切点分别为A ,B .连接AC ,BC ,MC ,由∠AMB =∠MAC =∠MBC =90°及MA =MB 知,四边形MACB 为正方形,故|MC |=2+2=2,若直线l 上总存在点M 使得过点M 的两条切线互相垂直,只需圆心(-1,2)到直线l 的距离d =|-m -2+2m -2+4-4m |(m +2)2+(m -1)2≤2,即m 2-8m-20≤0,∴-2≤m ≤10,故选C.14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. 答案 4解析 ⊙O 1与⊙O 在A 处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5. 又A ,B 关于OO 1所在直线对称, ∴AB 长为Rt △OAO 1斜边上的高的2倍, ∴|AB |=2×5×255=4.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 过定点( ) A.⎝⎛⎭⎫49,89 B.⎝⎛⎭⎫29,49 C .(1,2) D .(9,0)答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为P A ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥P A ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝⎛⎭⎪⎫x -9-2m 22+⎝⎛⎭⎫y -m 22=(9-2m )2+m24, ① 又x 2+y 2=9, ②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0,即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点A ,B ,以线段AB 为直径的圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,求实数t 的取值范围.解 由题意可得直线AB 的方程为x =y +1,与y 2=4x 联立消去x ,可得y 2-4y -4=0,显然Δ=16+16>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4,y 1y 2=-4,设E (x E ,y E ),则y E =y 1+y 22=2,x E =y E +1=3,又|AB |=x 1+x 2+2=y 1+1+y 2+1+2=8,所以圆E 是以(3,2)为圆心,4为半径的圆,所以点D 恒在圆E 外.圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,即圆E 上存在点P ,Q ,使得DP ⊥DQ ,设过D 点的两直线分别切圆E 于P ′,Q ′点,要满足题意,则∠P ′DQ ′≥π2,所以|EP ′||DE |=4⎝⎛⎭⎫3+322+()2-t 2≥22,整理得t 2-4t -314≤0,解得2-472≤t ≤2+472,故实数t 的取值范围为⎣⎡⎦⎤2-472,2+472.。
圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
平面解析几何直线与圆的位置关系在平面解析几何中,直线和圆是两个基本的几何概念。
它们之间存在着不同的位置关系,这些位置关系在几何学中有着重要的应用。
本文将介绍直线与圆的七种位置关系,并探讨其几何特征和判别方法。
一、直线与圆相离直线与圆相离是指直线与圆不相交,且它们的最短距离大于圆的半径。
这种情况下,直线上的每个点到圆的距离都大于圆的半径。
图1是直线与圆相离的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离大于半径,则直线与圆相离。
二、直线与圆相切直线与圆相切是指直线与圆有且只有一个公共的切点。
这个切点既在直线上,也在圆上。
图2是直线与圆相切的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离等于半径,则直线与圆相切。
三、直线穿过圆直线穿过圆是指直线与圆有两个交点。
这种情况下,直线分为两部分,一部分在圆内,一部分在圆外。
图3是直线穿过圆的示意图。
判别方法:通过求直线到圆心的距离来判断,若距离小于半径,则直线穿过圆。
四、直线与圆相交但不穿过圆直线与圆相交但不穿过圆是指直线与圆有两个交点,但直线的一部分在圆的外部,另一部分在圆的内部。
图4是直线与圆相交但不穿过圆的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相交但距离大于半径,则直线与圆相交但不穿过圆。
五、直线与圆内切直线与圆内切是指直线与圆有且只有一个公共切点,并且这个切点在直线的一侧。
图5是直线与圆内切的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离小于半径,则直线与圆内切。
六、直线与圆外切直线与圆外切是指直线与圆有且只有一个公共切点,并且这个切点在直线的另一侧。
图6是直线与圆外切的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离大于半径,则直线与圆外切。
七、直线在圆内直线在圆内是指直线的所有点都在圆的内部。
图7是直线在圆内的示意图。
判别方法:通过求直线到圆心的距离来判断,若直线到圆心的距离小于圆的半径,则直线在圆内。
平面几何中的圆与直线的位置关系在平面几何中,圆与直线是两种常见的几何元素,它们之间的位置关系是几何学中的一个重要研究内容。
本文将讨论圆与直线在平面上的不同位置关系,以及对应的性质和定理。
一、圆与直线的位置关系之相离当一个直线与一个圆没有任何交点时,我们称这两者为相离的关系。
具体而言,相离有以下三种情况:1. 直线在圆的外部:当直线的位置离开圆,且没有与圆相交时,我们说直线在圆的外部。
在这种情况下,直线与圆之间的最短距离等于两者的半径之差。
2. 直线与圆相切:当直线恰好与圆相切于一点时,我们称这两者为相切的关系。
在这种情况下,直线与圆的切点即为其唯一的交点。
此时,直线与圆的切点到圆心的距离等于圆的半径。
3. 圆在直线的外部:当圆完全在直线的一侧,且没有与直线相交时,我们说圆在直线的外部。
此时,直线与圆之间的最短距离等于两者的半径之和。
二、圆与直线的位置关系之相交当一个直线与一个圆相交于两个不同的交点时,我们称这两者为相交的关系。
具体而言,相交有以下两种情况:1. 直线通过圆:当一条直线正好经过圆心时,这条直线被称为直线通过圆。
在这种情况下,直线与圆有无数个交点,且直线与圆的切点到圆心的距离等于圆的半径。
2. 直线与圆相交于两点:当直线与圆相交于两个不同的交点时,我们称这两者为相交于两点的关系。
在这种情况下,直线与圆的交点满足以下性质:- 直线与圆的交点到圆心的距离等于圆的半径。
- 直线与圆的交点所在的弦垂直于直线,并且两者的交点处于弦的中垂线上。
三、圆与直线的位置关系之相切当一个直线与一个圆仅在一点处相切时,我们称这两者为相切的关系。
相切有以下两种情况:1. 直线外切圆:当直线与圆只在圆的外切点相切时,我们说直线外切圆。
在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。
2. 直线内切圆:当直线与圆在圆的内切点相切时,我们说直线内切圆。
在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。
四、圆与直线的位置关系之包含当一个圆完全包含在直线的内部时,我们称圆被直线包含。
§9.4直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的范围、最值、几何量的大小等.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系.⇔相交;⇔相切;⇔相离.(2)代数法:―――→判别式Δ=b2-4ac⎩⎪⎨⎪⎧>0⇔;=0⇔;<0⇔ .2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离外切相交内切内含概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()(3)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B 四点共圆且直线AB的方程是x0x+y0y=r2.()(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.()题组二教材改编2.[P128T4]若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是() A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)3.[P130练习]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.[P133A组T9]圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.题组三易错自纠5.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1]6.(2018·石家庄模拟)设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.4 2 C.8 D.8 27.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.题型一 直线与圆的位置关系命题点1 位置关系的判断例1 (2018·贵州黔东南州联考)在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是( ) A .相切B .相交C .相离D .不确定命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2 命题点3 切线问题例3 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).跟踪训练1 (1)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为________. (2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(3)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________.题型二圆与圆的位置关系命题点1位置关系的判断例4 分别求当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交和相切.命题点2公共弦问题例5 已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.跟踪训练2 (1)(2016·山东)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)圆x2+y2+4x-4y-1=0与圆x2+y2+2x-13=0相交于P,Q两点,则直线PQ的方程为______________.1.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是() A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)2.直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长为()A.30B.532C .4 2D .3 33.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离4.(2018·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-145.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条6.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .97.(2016·全国Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.8.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________. 9.(2018·衡阳质检)已知圆E :x 2+y 2-2x =0,若A 为直线l :x +y +m =0上的点,过点A 可作两条直线与圆E 分别切于点B ,C ,且△ABC 为等边三角形,则实数m 的取值范围是______________.10.已知圆C 1:x 2+y 2+2ay +a 2-4=0和圆C 2:x 2+y 2-2bx -1+b 2=0外切,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为____________.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.12.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.13.(2018·贵州贵阳第一中学月考)已知直线l :(m +2)x +(m -1)y +4-4m =0上总存在点M ,使得过M 点作的圆C :x 2+y 2+2x -4y +3=0的两条切线互相垂直,则实数m 的取值范围是( ) A .m ≤1或m ≥2 B .2≤m ≤8 C .-2≤m ≤10D .m ≤-2或m ≥814.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 过定点( ) A.⎝⎛⎭⎫49,89 B.⎝⎛⎭⎫29,49 C .(1,2)D .(9,0)16.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点A ,B ,以线段AB 为直径的圆E 上存在点P ,Q ,使得以PQ 为直径的圆过点D ⎝⎛⎭⎫-32,t ,求实数t 的取值范围.。