拉伸法测量金属丝弹性模量带数据处理
- 格式:doc
- 大小:128.10 KB
- 文档页数:8
静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。
作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。
实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。
其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。
本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。
本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。
图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。
设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。
② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
1§2.2 拉伸法测弹性模量【预习重点】1.弹性模量的定义及单位。
2.光杠杆的原理。
3.处理数据的逐差法。
【实验目的】1.测钢的弹性模量, 并验证虎克定律。
2.掌握用光杠杆测微小长度变化的原理和方法。
3.学会用逐差法处理数据。
4.学习不确定度分析的应用。
【实验原理】一、固体材料的弹性模量弹性模量(Modulus of elasticity)是描述固体材料抵抗形变能力的重要物理量, 是选定机械构件的依据之一, 是工程技术中常用的参数。
固体在外力作用下发生形状大小的变化, 称为形变。
本实验只研究弹性形变, 也就是应当控制外力的大小, 以保证外力去掉后物体能恢复原状。
由胡克定律, 在弹性限度内, 弹簧的弹力F 的大小和弹簧伸长(缩短)的长度X 成正比, 即kX F = (2.2.1)式中常数 称为劲度系数, 它不仅与物体的材料有关, 还和物体的几何形状有关, 它是具体物体的一个常数。
事实上, 虎克定律不仅适用于弹簧体, 一般固体受拉(压)伸长(缩短)产生的弹力都遵从(2.2.1)式所表示的关系。
为了不使物体的几何形状对材料弹性的研究产生影响, 我们取棒状物体作为样品, 折算成单位长度和单位横截面积来确定表征材料弹性的系数。
设长为L 、横截面积为A 的一个棒状物体, 两端受拉力F 后, 伸长量为X, 则比值F/A 是单位横截面上的作用力叫做应力(Stress), 它决定了物体的形变;比值X/L 是单位长度的伸长, 叫做应变(Strain), 它表示物体形变的大小。
这时虎克定律可表达为:LX AF Y //=(2.2.2) 式中常数Y 称为弹性模量, 也叫杨氏模量, 它只决定于构成物体的材料的性质, 不再与2几何形状有关。
弹性模量Y 的国际单位制单位名称是帕〔斯卡〕, 单位符号是Pa, 1Pa=1N/m2。
二、弹性模量的测定本实验要测定钢的弹性模量, 由(2.2.2)式知, 需要进行力和长度两方面的测量。
用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是描述某物质材料在受到拉伸或压缩时,弹性变形程度大小的一个物理量。
在实际应用中,杨氏模量常用于描述金属、合金、非晶态材料等材料的弹性特性。
在本次实验报告中,我们将通过拉伸法测量金属丝的杨氏模量。
实验目的:1. 了解拉伸法测定金属丝杨氏模量的基本原理。
2. 掌握拉伸法测定金属丝杨氏模量的实验方法。
3. 掌握实验数据的处理方法,确定金属丝的杨氏模量。
实验原理:当杆(或丝)在轴向受到拉伸力 F 后,其长度增加ΔL,应变为 E。
定义贯穿力 F、应变 E 和初始长度 L 的比值为一项物理量,称为杨氏模量 Y。
根据杨氏定律可得:$$ Y = \frac {F/A} {\Delta L/L} $$其中 A 为截面面积。
实验步骤:1. 用细钢丝制备试件,长度大于两倍的所需要的长度。
2. 将一个试件端固定,另一端悬挂一重物,使得钢丝呈直线状,测试钢丝的长度L0。
3. 用万能测量仪测试钢丝悬挂重物后的长度 L1。
4. 根据悬挂的重量计算钢丝的拉力 F。
5. 重复以上步骤,重复至少三次,记录不同重量下的拉力及钢丝的长度变化。
6. 计算每个拉力及钢丝长度变化的平均值,并绘制拉力-长度变化曲线。
7. 根据拉力-长度变化曲线计算钢丝杨氏模量 Y。
实验数据及处理:重量(kg)|拉力F(N)|长度变化ΔL(mm)|-|-|-|0.001|0.0098|0.15|0.002|0.0196|0.30|0.003|0.0294|0.45|0.004|0.0392|0.60|0.005|0.0490|0.74|计算钢丝的杨氏模量:平均截面积A = πd^2/4 = π(0.18mm)^2/4 = 2.54×10^(-5)m^2计算平均应变 E 平均长度变化ΔL/L =(0.15mm+0.30mm+0.45mm+0.60mm+0.74mm)/(200mm) = 0.0025E = ΔL/L = 0.0025/5 = 0.0005计算杨氏模量 Y Y = F/A/E =(0.0098N+0.0196N+0.0294N+0.0392N+0.0490N)/(5×2.54×10^(-5)m^2×0.0005) =1.96×10^11 Pa实验结果:经过实验测试,我们得到了金属丝的杨氏模量为 1.96×10^11 Pa。
实验用拉伸法测金属丝的杨氏弹性模量研究报告(1)实验用拉伸法测金属丝的杨氏弹性模量研究报告引言:金属材料的杨氏弹性模量是其力学性能的重要指标之一,对于材料的设计和应用有着重要的意义。
本实验采用拉伸法来测量金属丝的杨氏弹性模量。
实验原理:人们常用杨氏弹性模量来表示物体在受到力的情况下的应变情况,公式为:E=σ/ε其中,E为杨氏弹性模量,σ为应力,ε为应变。
应力可以通过拉伸式来求得,因此可以通过拉伸实验来测量杨氏弹性模量。
具体实验步骤如下。
实验步骤:1.准备:选取一段足够长的金属丝,利用毫米尺测量其直径,记录下其原始标距L0。
2.夹持:将金属丝固定在夹持装置中,确保其处于竖直状态,不受外力作用。
3.加力:在金属丝上方挂载一个小质量,此时金属丝将被拉伸,读取金属丝下端的位移量,记录下当前的拉伸长度L。
4.计算:根据拉伸长度、原始标距以及小质量的重力可以求得应变ε和应力σ。
5.重复:根据要求,重复进行拉伸,记录下金属丝的拉伸长度以及应变和应力,直到拉伸程度达到指定的终点位置。
6.处理数据:将得到的应变与应力数据描绘成应力-应变曲线,求出其中的斜率,即为杨氏弹性模量。
实验结果与分析:在本次实验中,我们选取了一根铜丝,经实验测得直径为1.2mm,原始标距L0为50mm。
我们分别对其进行了0.1kg、0.2kg、0.3kg、0.4kg、0.5kg、0.6kg、0.7kg、0.8kg、0.9kg和1.0kg的质量下拉伸实验,记录下拉伸长度和应变数据。
将拉伸长度与对应的应变数据通过Excel表格绘制成应力-应变曲线,如图所示。
应力-应变曲线根据图中所示曲线和斜率,求得该铜丝的杨氏弹性模量为1.3×10^11Pa。
该值与文献值相差不大,说明本实验的操作方法和数据处理都比较准确。
实验结论:本实验采用拉伸法测量了铜丝的杨氏弹性模量,得到的结果表明,铜丝的杨氏弹性模量为1.3×10^11Pa,实验结果比较准确,达到了预期目标。
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称ll SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lFY ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2)。
由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n 。
(3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆。
5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值。
五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0.718 0.714 0.705 0.704 0.705 0.711 0.710 )10()(242mm d d i -⨯-.64.16.25.36.25.010.278钢丝直径d 的:A 类不确定度)1(/)(1)()1(1)(22--=--=∑∑n d d nd d n n d u i iA =-⨯=-)16(/10278.040.0024 mmB 类不确定度0023.03004.03)(==∆=d u B mm总不确定度=+=)()()(22d u d u d u B A C 0.0034 mm相对不确定度 ===710.00034.0)()(dd u d u C r 0.48% 测量结果 ⎩⎨⎧=±=%48.0)()004.0710.0(d u mm d r2.单次测量:用米尺单次测量钢丝长l 、平面镜与标尺间距L ,用游标卡尺测量光杠杆长b(都取最小刻度作为仪器误差,单次测量把B 类不确定度当作总不确定度处理)表2 钢丝长l 、平面镜与标尺间距L 、测量光杠杆长b 单位:mm测读值不确定度相对不确定度l 663.0 0.58 )(l u r 0.087% L 907.5 0.58 )(L u r 0.064% b75.860.012)(b u r0.016%(计算方法:不确定度=仪器误差/3)3.光杠杆法测量钢丝微小伸长量砝码重量 (千克力)标尺读数)(cm隔项逐差值)(cm n i ∆加砝码时减砝码时平均2/)('''i i n n +2.00 '0n1.80 ''0n1.88 0n1.84 4n -0n0.753.00 '1n2.01 ''1n2.09 1n 2.05 4.00 '2n 2.20 ''2n2.27 2n 2.23 5n -1n 0.74 5.00 '3n 2.38 ''3n2.44 3n 2.41 6.00 '4n 2.56 ''4n 2.61 4n2.59 6n -2n 0.74 7.00 '5n 2.78 ''5n2.79 5n 2.79 8.00 '6n 2.96 ''6n 2.98 6n2.97 7n -3n0.739.00'7n3.13''7n3.157n3.14所以,在F=4.00千克力作用下,标尺的平均变化量Δn=0.74 cmΔn 的总不确定度 cm n u n u B C 0012.0)()(=∆≈∆ Δn 相对不确定度 %16.0)(=∆n u r“仪器误差”,即mm n u 01203020./.)(==∆)4.计算杨氏模量并进行不确定度评定由表1、表2、表3所得数据代入公式nb d FlLY ∆=28π可得钢丝的杨氏模量的: 近真值23233321074.01086.75]10710.0[14.3105.907100.6638.900.488-----⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=∆=n b d FlL Y π=1110123.2⨯(N/m 2) 相对不确定度 222222)]([)]([)]([)]([)]([)(n u b u d u L u l u Y u r r r r r r ∆++++=222220016.000016.0)0048.02(00064.000087.0++⨯++=%98.0=总不确定度 Y Y u Y u r C ⋅=)()(111021.0⨯=(N/m 2)测量结果⎩⎨⎧=⨯±=%98.0)(/10)21.012.2(211Y u m N Y r。
用静态拉伸法测金属丝的杨氏弹性模量材料受力后发生形变。
在弹性限度内,材料的胁强与胁变(即相对形变)之比为一常数,叫弹性模量。
条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。
杨氏弹性模量是描述固体材料抵抗形变能力的重要物理咼.是选左机械构件的依摒之一,是工程技术中常用的参数。
测呈材料的杨氏弹性模量有拉伸法、梁的弯曲法、振动法、内耗法等等,本实验采用静态拉伸法测上杨氏弹性模量。
要求掌握利用光杠杆测左微小形变(角度)的方法。
在实验方法上,通过本实验可以看到,以对称测量法消除系统误差的思路在其它类似的测量中极具普遍意义。
在实验装置上的光杠杆镜放大法,由于它的性能稳怎、精度高,而且是线性放大,所以在设计各类测试仪器中得到广泛的应用。
在数据处理上,本实验采用一种常用的逐差法,这种方法在实验中经常被使用。
一.实验目的1.学会测量杨氏弹性模虽的一种方法;2.掌握用光杠杆法测量微小伸长量的原理:3.学会用逐差法处理实验数据。
二.实验仪器杨氏模量仪、光杠杆、望远镜尺组、米尺、千分尺。
三.实验原理1 任何固体在外力作用下都要发生形变,当外力撤除后物体能够完全恢复原状的形变称为弹性形变。
如果加在物体上的外力过大,以致外力撤除后,物体不能完全恢复原状而留下剩余形变,称为塑性形变(或范性形变)。
本实验只研究弹性形变。
因此所加外力不宜过大。
最简单的形变是棒状物体受外力后的伸长或缩短。
设钢丝截而积为S.长为厶。
今沿长度方向施以外力F使棒伸长△厶。
则比值F/S是单位截而上的作用力,称为应力(胁强);比值厶是物体的相对伸长量,称为应变(胁变).它表示物体形变的大小。
根据胡克左律,在物体的弹性限度内,应力与应变成正比,即匚=丫•兰s L(1)式中比例系数Y的大小,只取决于材料本身的性质,与外力F、物体原长厶及截而积S的大小无关•叫做材料的杨氏弹性模量。
在材料工程中,它是一个重要的物理呈。
上式可写为丫=旦s△厶(2)根据(2)式,测出等号右边各量后,便可算岀杨氏模量。
静态拉伸法测量材料的弹性模量实验日期 2010年11 月 29日实验目的(1)学习拉伸法测材料的弹性模量(2)了解光杠杆的结构原理,掌握使用方法(3)学习使用最小二乘法处理实验数据实验仪器弹性模量仪)(包括尺读望远镜)、千分尺(25mm,0.01mm)、游标卡尺(13cm、0.02mm)、钢卷(3m、1mm)、砝码(500g,8个)、钢丝实验原理:1测量原理在弹性限度内,应力和相关应变成正比对于长度为L的细长物体,其均截面积为A,沿长度方向寿拉力F时伸长为△L,根据胡克定律有F/A=E*△L/LF/A为作用在单位面积上的力,称为应力;△L/L为单位长度上的形变为应变;比例系数E称为裁量的弹性模量,单位是N/2用光杠杆噶测钢丝伸长量△L的装置原理改变砝码,设两夹头之间钢丝长度变化量为△L,放在园挂R上的脚a也有△L的变化,于是光杆杠上的反射镜改变θ角,设钢丝长度变化前,望远镜中叉丝对准尺上的位置为x0;平面反射镜转动后,根据光的反射定律,镜面转动θ,反射线将转动2θ角,此时望远镜中叉丝将对准新位置x设光杠杆M上的反射镜到尺的距离为D,光杠杆前后支脚间的垂直距离为l,因为θ很小,则2θ=tan2θ=x-x0/D,又θ=△L/L 故△L=l(x-x0)/2D测量出l和D,由望远镜中读出x0和x,即可算出△L从而求出E=2DL/Al*F/(x-x0)由于A=/4*(d为金属丝的直径),F=mg(m为金属丝上所加砝码的质量,g为重力加速度,故而上式应为E=*实验内容与测量(1)调整仪器的装置1)调节反射镜使得米尺的反射像在望远镜中2)从望远镜中观察,调节视度圈看清望远镜中的十字叉丝;调节聚焦手轮直至米尺的像清晰为止砝码钩上加4000g砝码,记下望远镜中读书x7,然后依次减少砝码(每次减少500g),并记下相应的读数x6,x5,……3)用米尺测量L、D的长度4)用千分尺测量钢丝的直径d,在不同位置测量,共测量6次,5)取下光杠杆,让它的三支脚在平铺的白纸上扎三个小孔,用游标、卡尺测出l 的长度钢丝伸长与外力的关系序号砝码/g 望远镜中的读数xi/cm △xi=xi-x0(cm)/cm减重加重平均值1234567钢丝的直径数据表千分尺初读数d0= cm测量次数 1 2 3 4 5 6末读数/cm直径d=-d0//cm。
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称ll SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lFY ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2)。
由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n 。
(3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆。
5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值。
五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0.718 0.714 0.705 0.704 0.705 0.711 0.710 )10()(242mm d d i -⨯-.64.16.25.36.25.010.278钢丝直径d 的:A 类不确定度)1(/)(1)()1(1)(22--=--=∑∑n d d nd d n n d u i iA =-⨯=-)16(/10278.040.0024 mmB 类不确定度0023.03004.03)(==∆=d u B mm总不确定度=+=)()()(22d u d u d u B A C 0.0034 mm相对不确定度 ===710.00034.0)()(dd u d u C r 0.48% 测量结果 ⎩⎨⎧=±=%48.0)()004.0710.0(d u mm d r2.单次测量:用米尺单次测量钢丝长l 、平面镜与标尺间距L ,用游标卡尺测量光杠杆长b(都取最小刻度作为仪器误差,单次测量把B 类不确定度当作总不确定度处理)表2 钢丝长l 、平面镜与标尺间距L 、测量光杠杆长b 单位:mm测读值不确定度相对不确定度l 663.0 0.58 )(l u r 0.087% L 907.5 0.58 )(L u r 0.064% b75.860.012)(b u r0.016%(计算方法:不确定度=仪器误差/3)3.光杠杆法测量钢丝微小伸长量砝码重量 (千克力)标尺读数)(cm隔项逐差值)(cm n i ∆加砝码时减砝码时平均2/)('''i i n n +2.00 '0n1.80 ''0n1.88 0n1.84 4n -0n0.753.00 '1n2.01 ''1n2.09 1n 2.05 4.00 '2n 2.20 ''2n2.27 2n 2.23 5n -1n 0.74 5.00 '3n 2.38 ''3n2.44 3n 2.41 6.00 '4n 2.56 ''4n 2.61 4n2.59 6n -2n 0.74 7.00 '5n 2.78 ''5n2.79 5n 2.79 8.00 '6n 2.96 ''6n 2.98 6n2.97 7n -3n0.739.00'7n3.13''7n3.157n3.14所以,在F=4.00千克力作用下,标尺的平均变化量Δn=0.74 cmΔn 的总不确定度 cm n u n u B C 0012.0)()(=∆≈∆ Δn 相对不确定度 %16.0)(=∆n u r“仪器误差”,即mm n u 01203020./.)(==∆)4.计算杨氏模量并进行不确定度评定由表1、表2、表3所得数据代入公式nb d FlLY ∆=28π可得钢丝的杨氏模量的: 近真值23233321074.01086.75]10710.0[14.3105.907100.6638.900.488-----⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=∆=n b d FlL Y π=1110123.2⨯(N/m 2) 相对不确定度 222222)]([)]([)]([)]([)]([)(n u b u d u L u l u Y u r r r r r r ∆++++=222220016.000016.0)0048.02(00064.000087.0++⨯++=%98.0=总不确定度 Y Y u Y u r C ⋅=)()(111021.0⨯=(N/m 2)测量结果⎩⎨⎧=⨯±=%98.0)(/10)21.012.2(211Y u m N Y r。
实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据.二.实验原理长为l ,截面积为S 的金属丝,在外力F 的作用下伸长了l ∆,称ll SF Y //∆=为杨氏模量(如图1)。
设钢丝直径为d ,即截面积42/d S π=,则24ld lFY ∆=π。
伸长量l ∆比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量l ∆(如图2).由几何光学的原理可知,n L bn n L b l ∆⋅=-≈∆220)(, nb d FlL Y ∆=∴28π 。
图1 图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码.记录此时望远镜十字叉丝水平线对准标尺的刻度值0n 。
(2) 依次增加1个砝码,记录相应的望远镜读数''',,721n ,n n . (3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数'''''''',,,0167n n ,n n 。
(4) 计算同一负荷下两次标尺读数('i n 和''i n )的平均值2/)('''i i i n n n +=。
(5) 用隔项逐差法计算n ∆.5. 用钢卷尺单次测量标尺到平面镜距离L 和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b 。
6.进行数据分析和不确定度评定,报道杨氏模量值.五.数据记录及处理1.多次测量钢丝直径d表1 用千分卡测量钢丝直径d (仪器误差取0.004mm )测量部位 上中下平均测量方向 纵向横向纵向横向纵向横向)(mm d0。
金属丝杨氏弹性模量的测定及其实验数据【实验目的】1.学习静态拉伸法测金属丝的杨氏模量。
2.掌握用光杠杆法测量微小长度变化的原理和方法。
3.利用有效的多次测量,及相应处理方法来减小误差。
【实验仪器】杨氏模量测量仪,光杠杆,望远镜尺组,米尺,游标卡尺【实验原理】根据胡克定律,金属丝的杨氏弹性模量, L是一个微小长度变化量,当金属丝直径为0.5毫米时, L约为10-5米。
实验中采用光杠杆镜尺法测量。
利用光杠杆镜尺法由几何原理可得,光杠杆的放大倍数为β=2D/b,一般D=1.5—2.0米,b=7.0厘米,所以放大倍数约为40倍。
通过在增加(减)砝码的同时测出标尺读数Xi和其他的长度量L、D、d、b,就能求得金属丝的杨氏弹性模量Y. 【实验内容】1.调整支架,使金属丝处于铅直位置2.调光杠杆和望远镜,使能在望远镜中看清标尺像,并无视差。
3.通过增减砝码,测出相应的标尺读数Xi′和Xi″(共加五个砝码),由Xi= Xi′/ Xi″,用逐差法求出?Xi。
重复一次。
4.测出L、D、d、b,重复六次,求出杨氏模量,【注意事项】1.仪器一经调好,测量开始,切勿碰撞移动仪器,否则要重新调节,老师检查数据前也不要破坏调节好的状态,否则一旦有错误,将难以查找原因或补作数据。
2.望远镜、光杠杆属精密器具,应细心使用操作。
避免打碎镜片,勿用手或他物触碰镜片。
3.调节旋钮前应先了解其用途,并预见到可能产生的后果或危险,不要盲目乱调,以免损坏仪器,调节旋钮时也不要过分用力,防止滑丝。
4.用螺旋测微计测量钢丝直径时,要端平测微计,避免钢丝弯曲,【数据处理】1.增减重量时钢丝伸缩量的记录数【思考题】1.在本实验中,为什么可以用不同精确度的量具测量多种长度量?为什么有些需要多次测量,有些单次测量就可以?2. 如何用十几个砝码即快又精确地测量出金属丝的平均伸长量,应该用什么方法来计算?3.光杠杆法可测微小长度变化,其主要是采用了光放大原理,放大率为β=2D/b 。
用拉伸法测金属丝的杨氏弹性模量一、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长L∆,则在金属丝的弹性限度内,有:FSELL=∆我们把E称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2DntgxLnDxL∆⋅=∆⇒2(2nnn-=∆)nx d FLDLnDx dFL L S F E ∆⋅=∆=∆=228241ππ 四、 实验内容 <一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。
<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
专业资料整理分享
完美WORD格式编辑
本 科 实 验 报 告
(详写)
【实验目的】
1.掌握拉伸法测量金属丝弹性模量的原理和方法。
2.学习光杠杆测量微小长度的变化的原理和方法。
3.进一步学习用逐差法,作图法处理数据。
4.多种长度测试方法和仪器的使用。
【实验内容和原理】
1.测定金属丝弹性模量
假定长为L、横截面积为S的均匀金属丝,在受到沿长度方向
的外力F作用下伸长∆L,根据胡克定律可知,在弹性限度内,应变
∆L /L与外F/S成正比,即
专业资料整理分享
完美WORD格式编辑
(E称为该金属的杨氏模量) (1)
由此可得:
(2)
其中F,S和L都比较容易测量;∆L是一个很小的长度变化量。
2.光杠杆测量微小长度变化
当金属丝受力伸长∆L时,光杠杆后脚
1
f
也随之下降∆L,在较
小(即∆L << b)时,有
∆L / b = tan (1)
若望远镜中的叉丝原来对准竖尺上的刻度为
0
r
;平面镜转动后,
根据广的反射定律,镜面旋转,反射线将旋转2,设这时叉丝对 维持镜面与i时,有 图3-1 bld 4.为减小实验误差依次在砝码钩上挂砝码(每次1kg,并注意砝码 2 (i=1,2,……,6) 5.按逐差法处理数据的要求测量弹性模量。 i3iin-nn 及伸长量的平均值 3 将n,L,D,K,d各测量结果代入(3)式,计算出待测金属丝的弹性 222222 (4) 【操作方法与实验步骤】 二、光杠杆及望远镜镜尺组的调整 【实验数据】 次数 力(N) in 加砝码 减砝码 d 仪 0.004(mm) 合成不确定度:004.0d2d2S仪(mm) 1 1.00 4.4 4.4 4.4 次数 1 2 3 4 5 )( 0.669 0.669 0.670 0.670 0.669 0.6694 mmd 1 3 4 完美WORD格式编辑 n82 = 7.700.70)725.0(141.30.15980.450196082 = 由于 因此对应的误差传递公式为: 222222 01615.0)7.703.0()00.7005.0()669.0004.02()0.15985.0()0.4505.0()19604(22222 实验结果: 28 210 (2)用逐差法处理数据的优点是什么,应注意什么问题 (3)本实验中必须满足什么条件,这些条件是怎么提出的,?你能 (4)两根材料相同,而粗细、长度不同的钢丝,在相同的加载条件
准新的刻度为
1r。令∆n= |1
r
–0r|,则当2很小(即∆n <
∆n / D=tan22 (2)
由○1、○2得,∆L= b ∆n / (2D)。
专业资料整理分享
完美WORD格式编辑
i
n
3.由以上可知,光杠杆的作用在于将微小的伸长量∆L放大为竖尺
上的位移∆n。通过∆n, b, D这些比较容易准确测量的量间接地测定
∆L。其中2D/b称为光杠杆的放大倍数。
FLDE28
(3)
应交错放置整齐)。待系统稳定后,记下相应十字叉丝处读数
(i=1,2,……,6)。依次减小砝码(每次1kg),待稳定后,记十
字叉丝处相应读数(i=1,2,……,6)。取同一负荷刻度尺读数平均
值
nnn'iii
计算对应3Kg负荷时金属丝的伸长量
(i=1,2,3,)
nn31ii
模量及测量结果的不确定度。
)()()()(4)()(FKndDLEEFKndDL
专业资料整理分享
完美WORD格式编辑
【实验仪器】
弹性模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水平
仪。钢卷尺(5M)。螺旋测微器(0.01mm)。游标卡尺(Δx=0.05mm)。
台灯、砝码。
一、调节仪器
a.调节杨氏模量测定仪三角底座上的调整螺钉,使支架、细钢丝
铅直,使平台水平。
b.将光杠杆放在平台上,两前脚放在平台前面的横槽中,后脚放
在钢丝下端的夹头上适当位置,不能与钢丝接触,不要靠着圆孔边,
也不要放在夹缝中。
1.调节光杠杆
(1).将望远镜放在离光杠杆镜面约为1.5-2.0m处,并使二者在同
一高度。
(2).调整光杠杆镜面与平台面垂直,望远镜成水平,注意光杠杆的
中心可能会不稳,在调节的时候,要注意在光杠杆支架上的槽与光杠
杆尖脚的契合,在此步骤前应先测量好b的值。
2.调整望远镜
(1)移动标尺架和微调平面镜的仰角,及改变望远镜的倾角。使得
通过望远镜筒上的准心往平面镜中观察,能看到标尺的像,在实验中,
由于初次接触,这一步骤所花的时间较长,最后发现,使准星对准镜
中的标志的像才能够几率较大的达到实验要求。
(2)调整目镜至能看清镜筒中叉丝的像;
专业资料整理分享
完美WORD格式编辑
(3)慢慢调整望远镜右侧物镜调焦旋钮直到能在望远镜中看见清晰
的标尺像,并使望远镜中的标尺刻度线的像与水平线的像重合;
(4)消除视差。眼睛在目镜处微微上下移动,像与标尺刻度线的像
出现相对位移,应重新微调目镜和物镜,直至消除为止。
3.试加八个砝码,从望远镜中观察是否看到刻度(估计一下满负荷
时标尺读数是否够用),若无,应将刻度尺上移至能看到刻度,调好
后取下砝码。
三、测量
采用等增量测量法
1.加减砝码。先逐个加砝码,共五个。每加一个砝码(1kg),记录一
次标尺的位置 ;然后依次减砝码,每减一个砝码,记下数据。 (所记 和
分别应为偶数个)。
2.测钢丝原长L。用钢卷尺或米尺测出钢丝原长(两夹头之间部分)L。
3.测钢丝直径d。在钢丝上选不同部位及方向,用螺旋测微计测出其
直径d,重复测量三次,取平均值。
4.测量距离D。注意一定要使卷尺保持水平,先将光杠杆平台与望远
镜调至同一水平面,再测量距离,一定保持卷尺水平,否则会成为误
差来源。
5.测量光杠杆常数K。用荧光笔在光杠杆的脚上涂抹,再将光杠杆微
用力压在白纸上,作图,用游标卡尺准确测量出K的值。
6.再重复上述步骤1,两次结果取平均值。
表1钢丝的直径
表2 测量数据
i
n
专业资料整理分享
完美WORD格式编辑
n
的不确定度:)1(t302nnxXSiiA=0.564(cm)
ASnn
2.0310.564(cm)
d
的A类不确定度:
dS
0.0007(mm)
的B类不确定度:
d=0.6690.004(mm)
2 2.00 7.4 8.0 7.7
3 3.00 10.9 11.1 11.0
4 4.00 14.0 14.1 14.1
)(mmd
mmd
i
i
(
) -0.0004 -0.0004 0.0006 0.0006 -0.0004 0.0007
n
2
n
n
n
专业资料整理分享
L =(45.00 0.05)cm d=(0.6690.004)mm
K=(70.00 0.02)mm D=(159.80 0.05)cm
KdFLDE
2/051.12670759mmg=210
/10267.1mkg
nlogloglogloglogloglog
2
KdDLFE
)()()()(4)()(FKndDLEEFKndDL
2810
/10038.201615.010267.1mkgEEEE
%615.1
E
E
/1003.2mkgE
/10)1.03.1(mkgE
专业资料整理分享
完美WORD格式编辑
【问题与建议】
(1)分析实验中那一项结果误差对测量结果影响最大,如何减少?
由上述数据知 Δ Δ 的数值最大,故Δ 的不确定度度试验影响最大,应在实验时保证
据的精准性,取多种数据也能减少误差
利用到每一个实验数据,减少误差较其他方法更精确
根据实验数据判断金属丝有没有超过弹性限度
镜面、钢丝和直尺三者平行, 砝码交错放置,望远镜和平面镜在同
一平面上,(2)有前后两次实验知道,Δ 的大小约相同,可判断在弹
性限度内
下,他们的伸长量是不是一样的?弹性模量是否相同?
伸长量不一样, 知,但弹性模量是一样的。