当前位置:文档之家› 大学物理-拉伸法测弹性模量 实验报告

大学物理-拉伸法测弹性模量 实验报告

大学物理-拉伸法测弹性模量 实验报告
大学物理-拉伸法测弹性模量 实验报告

大连理工大学

大 学 物 理 实 验 报 告

院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节

实验名称 拉伸法测弹性模量

教师评语

实验目的与要求:

1. 用拉伸法测定金属丝的弹性模量。

2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。

3. 学会处理实验数据的最小二乘法。

主要仪器设备:

弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器

实验原理和内容: 1. 弹性模量

一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。

有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即

l

l

?=E S F 其中的比例系数

l

l S

F E //?=

称为该材料的弹性模量。

性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理

光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为

01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量

忽略及图中的相似几何关系, 可以得到

n B

b

l ??=

?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到

n

b D FlB

E ?=

2

8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。)

根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有

02

8n F bE

D lB

n i i +?=

π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。

P.S. 用望远镜和标尺测量间距B :

已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ

用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到

N p f x ?=

, 又在仪器关系上, 有x=2B , 则N p

f

B ??=21 , (100=p f )。

由上可以得到平面镜到标尺的距离B 。

步骤与操作方法:

1.组装、调整实验仪器

调整平面镜的安放位置和俯仰角度以确保其能够正常工作。调整望远镜的未知,使其光轴与平面镜的中心法线同高且使望远镜上方的照门、准星及平面镜位于同一直线上。

调节标尺,使其处于竖直位置。

通过望远镜的照门和准星直接观察平面镜,其中是否课件标尺的像来确定望远镜与平面镜的准直关系,以保证实验能够顺利进行。

调节望远镜,使其能够看清十字叉丝和平面镜中所反射的标尺的像,同时注意消除视差。

2.测量

打开弹性模量拉伸仪,在金属丝上加载拉力(通过显示屏读数)

当拉力达到10.00kg时,记下望远镜中标尺的刻度值n1,然后以每次1.00kg增加拉力并记录数据,直到25.00kg止。

用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度l。

用卡尺测量或者直接获得光杠杆常数b。

用望远镜的测距丝和标尺值,结合公式计算出尺镜距离B。

用螺旋测微器在不同位置测量钢丝直径8次(注意螺旋测微器的零点修正)

数据记录与处理:

以下是实验中测得的原始数据:

1.钢丝的长度L=401.2 mm

2.钢丝的直径

(其中螺旋测微器的零点漂移值Δ=-0.01mm 已包含)

3.由望远镜测得的差丝读数N1=4

4.8mm N2=63.8mm

4.光杠杆常数(实验室给出)b=(84.0±0.5)mm

5.钢丝加载拉力及对应的标尺刻度

未加载拉力时,标尺读数为n0=53.4mm

结果与分析:

钢丝长度测量值的不确定度为 Δi=0.5mm, 钢丝长度为 l=401.2±0.5mm

平均值= 0.79638 mm

D i -D avg= 0.00363 0.00263 0.00263 -0.00037 -0.00137 -0.00237 -0.00037 -0.00437 (ΔD i )^2=

1.31E-05 6.89E-06 6.89E-06 1.41E-07 1.89E-06 5.64E-06 1.41E-07 1.91E-05

Sum= 5.39E-05

n=8

v=7

Sd _avg= 0.000980843 平均值的实验标准差

t 0.95= 2.36 Ua=t 0.95*Sd 0.00231479

mm Ub= 0.005

mm

U D= 0.005509832

修约后的U D

=0.005 mm

D 的最终值

D= 0.796±0.005

mm

尺镜距离B

N1= 44.8 mm N2= 63.8

mm N Δ=N2-N1= 19.0

mm Δi= 0.5

mm ΔN 的最终值= 19.0±0.5

mm

N p

f B ?=21=

950.0

mm

B 的最终值 B=950.0±0.5 mm 光杠杆常数b= 84.0±0.5 mm

将加载拉力数据和相应的标尺读数转化为 F 以N 为单位, n i 以m 为单位, 得到如下

对上表数据进行 处理, 使用MLS

X avg =171.543 Y avg =0.069

n 1 2 3 4 5 6 7 8 X i -X avg -73.445 -63.743 -53.943

-44.045

-34.147 -24.543

-14.645

-4.943 Δx i ^2 5394.1497 4063.1541 2909.8338 1939.9510 1166.0091 602.3527 214.4724 24.4320

Δx i *y i

-4.575615

-4.0285

-3.47392 -2.867321

-2.25369

-1.64437 -0.994387 -0.340069

n 9 10 11 12 13 14 15 16 X i -X avg 4.955 14.657 24.457 34.355 44.057 53.759 63.657 73.555 Δx i ^2 24.5533 214.831 598.1510 1180.2746 1941.0303 2890.0435 4052.2296 5410.3564

Δx i *y i

0.34537

1.03625

1.75602

2.490746

3.189735 3.988927

4.793381

5.597545 SUM((x i -x avg )*y i )= 3.020057425 SUM((x i -x avg )^2)= 32625.8246

B= 9.25665*10-5

A= 0.0534

由以上数据可得: 0534.010*25665.95

+=-i i F n , 即k=9.25665*10-5

F 与ni 的关系图及其二乘法线性回归如下图所示:

结合以上有关数据, 可以得到

下面计算E 的相关不确定度: 相关量的值及其不确定度如下:

又已知

2222)()2()()(b

U

D U B U L U

E U b D B L E +++= 代入相关已知数据, 可以得到U E =2751552554.69, 修约后为U E =3*109

得到E 的最终结果为 E= (1.97±0.03)*1011Pa

讨论、建议与质疑:

1. 光杠杆的测量原理为以下两个性质的组合: 绝对光路可逆原理, 几何上的相似三角形性质。 它

利用光传播的直线性、可逆性, 使人眼通过望远镜观测到的标尺读数(长度)与钢丝的型变量, 在几何上通过相似三角形的关系联系起来, 另外通过平面镜的反射性质, 又再次将型变量在之前的基础上放大至两倍, 综上起到放大微小变化量的结果。 放大倍数与光杠杆常数b , 尺镜距离B 有关(可以认为与这两者比例B/b 成正比关系)。 当系统给定的光杠杆常数b 固定时, 在可读数的范围内增加尺镜距离B , 可以增大放大倍率从而提高尺镜法测量微小变化量的灵敏度。

2. 在实验中测量一个物理量,需要综合考虑测量的方便程度和该物理量所需的精密程度。 在平衡

这两者的基础上选择合适的实验仪器, 因此在实验中, 不同的物理量是用不同的测量仪器来测量的。 实验中测量误差最大的值为钢丝的长度, 因为钢尺量程不够, 是用两把钢尺重叠的方法测量, 在读数时会造成钢尺位移; 另外该物理量仅测量一次, 都会造成产生较大的误差。 改进建议是是用较大量程的钢尺进行测量。 3. 本实验的操作过程并不复杂, 但是将微观尺度的化学键作用同宏观的金属丝形变联系起来, 体

现了物理学上用宏观体现微观性质的一种思想; 另外实验中所是用的光杠杆尺镜测量法也提供了一种微小变量的较精确测量方法, 值得学习和借鉴。 实验中的感受是, 事先预习实验内容, 操作时细心、 稳当, 都是保证实验快速成功的条件。

4. 对本实验的改进是, 在加载力控制盒上加自动卸载的装置, 比如在内部注射器的活塞杆上套

弹簧, 当弹簧限位被解除时, 便可以自动将拉力卸载(类似于千斤顶的卸载开关), 这样能够方便地将拉力卸载到较小的符合值, 而不用手动拉活塞杆。

大学物理实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-053939 大学物理实验报告College Physics Experiment Report

大学物理实验报告 大学物理实验报告1 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。

注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示, 实验拓展:举例说明电弧放电的应用 大学物理实验报告2 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生 五、讨论与思考

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm , )、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方左右位置上;

4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0‘,' 7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 )()()()(37261504n n n n n n n n n -+-+-+-=? 3. 注:上式中的n ?为增重400g 的金属丝的伸长量。 【实验数据记录处理】 【结果及误差分析】 1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片擦拭镜面;

大学物理实验报告-基本测量

学实验报告 课程名称:_____ 大学物理实验(一)_________ 实验名称:实验1 基本测量______________ 学院:______________________________________ 专业:______ 课程编号: ________________________ 组号:16 指导教师: ________________ 报告人:__________ 学号_______________ 实验地点__________ 科技楼906 __________ 实验时间:______ 年_______ 月 ____ 日星期________ 实验报告提交时间:

四、实验容和步骤 五、数据记录 1用游标卡尺R测量圆筒的外径D径d、和高H 表1

2、用螺旋测微计测量粗铜丝、细铜丝的直径表2单位:________ 千分尺零点:____________ 千分尺基本误差:_____________ 六、数据处理: 1、计算圆筒的外径D ,并计算D(5分) 2、计算圆筒的径d ,并计算d(5 分)

2 3、计算圆筒的高 H ,并计算 H (5分) 4、计算粗铜丝直径 D 1及 D 1 (6分) 5、计算细铜丝直径 D 2及 D 2 (6分) 6、间接量B D 1D 2 D 1 D 2 ,计算B 的平均值、相对误差和绝对误差。 (5 分) 提示: D 2 D i D 2

七、实验结果与讨论 实验结果1: 圆筒的外径: D P = D D ( ) 实验结果2: 圆筒的径:d P = d d ( ) 实验结果3: 圆筒的高:H P = H H ( ) 实验结果4: 粗铜丝的直径: D i P = D i D i ( ) 实验结果5: 粗铜丝的直径: D2 P = D2 D2 ( ) 实验结果讨论:6: B P = B B ( )

大学物理实验报告优秀模板

大学物理实验报告优秀模板 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页) 把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学

论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。 实验报告内容与格式 (一) 实验名称 要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。 (二) 所属课程名称 (三) 学生姓名、学号、及合作者 (四) 实验日期和地点(年、月、日) (五) 实验目的 目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 (六) 实验内容 这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程. (七) 实验环境和器材 实验用的软硬件环境(配置和器材)。 (八) 实验步骤 只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以

大学物理实验用拉伸法测金属丝的杨氏弹性模量

用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1.学会用光杠杆法测量杨氏弹性模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定的计算方法,结果的正确表达; 5.学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm , 、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ?? ? ? =?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?)

n x d FLD L n D x d F L L S F E ??=?=?=2 2 8241ππ 四、 实验内容 <一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. 0n 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数0n ; 8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下' 7'65' 4' 3' 2' 1,,,,,,' n n n n n n n ; 10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 ) ()()()(37261504n n n n n n n n n -+-+-+-= ? 3. 注:上式中的n ?为增重kg 4的金属丝的伸长量。 五、 实验数据记录处理

大学物理实验报告书(共6篇)

篇一:大学物理实验报告1 图片已关闭显示,点此查看 学生实验报告 学院:软件与通信工程学院课程名称:大学物理实验专业班级:通信工程111班姓名:陈益迪学号:0113489 学生实验报告 图片已关闭显示,点此查看 一、实验综述 1、实验目的及要求 1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。 2.学会直接测量、间接测量的不确定度的计算与数据处理。 3.学会物理天平的使用。 4.掌握测定固体密度的方法。 2 、实验仪器、设备或软件 1 50分度游标卡尺准确度=0.02mm 最大误差限△仪=±0.02mm 2 螺旋测微器准确度=0.01mm 最大误差△仪=±0.005mm 修正值=0.018mm 3 物理天平 tw-0.5 t天平感度0.02g 最大称量 500g △仪=±0.02g 估读到 0.01g 二、实验过程(实验步骤、记录、数据、分析) 1、实验内容与步骤 1、用游标卡尺测量圆环体的内外径直径和高各6次; 2、用螺旋测微器测钢线的直径7次; 3、用液体静力称衡法测石蜡的密度; 2、实验数据记录表 (1)测圆环体体积 图片已关闭显示,点此查看 (2)测钢丝直径 仪器名称:螺旋测微器(千分尺)准确度=0.01mm估读到0.001mm 图片已关闭显示,点此查看 图片已关闭显示,点此查看 测石蜡的密度 仪器名称:物理天平tw—0.5天平感量: 0.02 g 最大称量500 g 3、数据处理、分析 (1)、计算圆环体的体积 1直接量外径d的a类不确定度sd ,sd=○ sd=0.0161mm=0.02mm 2直接量外径d的b类不确定度u○ d. ud,= ud=0.0155mm=0.02mm 3直接量外径d的合成不确定度σσ○ σd=0.0223mm=0.2mm 4直接量外径d科学测量结果○ d=(21.19±0.02)mm d = 5直接量内径d的a类不确定度s○

用拉伸法测材料弹性模量

实验21 用拉伸法测氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为氏弹性模量(简称氏模量)。 实验证明:氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理实验报告示例(含数据处理)

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量

【实验题目】长度和质量的测量 【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1-(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺 分度值的差值为:n x x n n x = -- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为: 1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对齐的刻线数 k 和卡尺的分度值x/n 读取: n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ; 对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为0.5mm ,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退0.5mm ,而微分筒每转一格时,测微螺杆前进或后退0.5/50=0.01mm 。可见该螺旋测微器的分度值为0.01mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意0.5刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以0.01mm, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m = ?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?=。 【实验内容与步骤】(实验内容及主要操作步骤)

拉伸法测弹性模量

清华大学实验报告 系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定: 实验2.1拉伸法测弹性模量 一、实验目的 (1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。 二、实验原理 1.弹性模量及其测量方法 弹性形变范围内,正应力与线应变成正比,即 式中的比例系数 称作材料的弹性模量 利用本实验中直接测量的数据,可将上式进一步写为 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F,测出钢丝 E。 2.逐差法处理数据 该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。 三、实验仪器 包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。 四、实验步骤与注意事项 (1)调整钢丝竖直。 (2)调节读数显微镜。先粗调再细调。 (3)测量。测量钢丝长度L D,测6次,并在测量前后记录螺旋测微计的零点d各3次。

五、数据表格及数据处理 1. 测量钢丝长度L 仪器编号;钢丝长度L=mm。 得到: = mm = mm 2. 测定钢丝直径D 测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____ mm 得到: 3. 总不确定度计算

由计算公式推导出E的相对不确定度的公式 出 结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。 六、思考题解答与分析 1. 在本实验中读数显微镜测量时那些情况下会产生空程误差?应如何消除它? 在测量中,转动手轮至标记点的过程中反转手轮会产生空程误差,在从增砝码变到减砝码手轮反转时会产生空程误差。 在测量中,应通过使手轮只向一个方向转动来消除空程误差,若是在调节某次标记线位置时,叉丝转过了标记线,则舍去这次的位移值,继续测量下一个位移值。在增减砝码手轮反转过程中,因尽量使手轮多转几圈,消除空程误差后,再进行下面的测量。 2. 从E的不确定度计算式分析哪个量的测量对E的结果的准确度影响最大?测量中应注意哪些问题? 通过多次测量取平均值来减小误差。另外,在测量前后要记录螺旋测微计的零点各3次,来减小系统误差对测量值的影响。 八、实验感受与收获 这是我的第一次实验,心情激动但也害怕结果会误差很大。事实证明顾虑其实是多余的,认真踏实的做实验就会有收获。通过本次试验,我锻炼了动手和观察能力,也深刻地体会到实验工作的辛苦,长时间使用读数显微计会使眼睛非常疲劳。 实验2.2动力学法测弹性模量 一、实验目的 (1)学习一种更实用、更准确的测量弹性模量的方法; (2)学习用实验方法研究与修正系统误差。

用静态拉伸法测金属丝的杨氏弹性模量

用静态拉伸法测金属丝的杨氏弹性模量 材料受力后发生形变。在弹性限度内,材料的胁强与胁变(即相对形变)之比为一常数,叫弹性模量。条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。 杨氏弹性模量是描述固体材料抵抗形变能力的重要物理咼.是选左机械构件的依摒之一,是工程技术中常用的参数。 测呈材料的杨氏弹性模量有拉伸法、梁的弯曲法、振动法、内耗法等等,本实验采用静态拉伸法测上杨氏弹性模量。要求掌握利用光杠杆测左微小形变(角度)的方法。 在实验方法上,通过本实验可以看到,以对称测量法消除系统误差的思路在其它类似的测量中极具普遍意义。在实验装置上的光杠杆镜放大法,由于它的性能稳怎、精度高,而且是线性放大,所以在设计各类测试仪器中得到广泛的应用。 在数据处理上,本实验采用一种常用的逐差法,这种方法在实验中经常被使用。 一.实验目的 1.学会测量杨氏弹性模虽的一种方法; 2.掌握用光杠杆法测量微小伸长量的原理: 3.学会用逐差法处理实验数据。 二.实验仪器 杨氏模量仪、光杠杆、望远镜尺组、米尺、千分尺。 三.实验原理 1 任何固体在外力作用下都要发生形变,当外力撤除后物体能够完全恢复原状的形变称为弹性形变。如果加在物体上的外力过大,以致外力撤除后,物体不能完全恢复原状而留下剩余形变,称为塑性形变(或范性形变)。本实验只研究弹性形变。因此所加外力不宜过大。 最简单的形变是棒状物体受外力后的伸长或缩短。设钢丝截而积为S.长为厶。今沿长度方向施以外力F使棒伸长△厶。则比值F/S是单位截而上的作用力,称为应力(胁强);比值厶是物体的相对伸长量,称为应变(胁变).它表示物体形变的大小。根据胡克左律,在物体的弹性限度内,应力与应变成正比,即 匚=丫?兰 s L(1) 式中比例系数Y的大小,只取决于材料本身的性质,与外力F、物体原长厶及截而积S的大小无关?叫做材料的杨氏弹性模量。在材料工程中,它是一个重要的物理呈。上式可写为丫=旦 s△厶(2) 根据(2)式,测出等号右边各量后,便可算岀杨氏模量。其中氏厶和S可用一般方法测得,微小伸长量4L用一般的咼具不易准确测量。本实验采用光杠杆镜尺组进行长度微小变化的测量,这是一种非接触式的长度放大测量的方法。同时,金属线截而积可用 S =丄7rd2 测其直径〃来获得, 4 。则(2)式可写为 —4FL TTC F'L(3) 下而介绍用光杠杆法测量微小伸长SAL的方法。 光杠杆装豊包括两部分,一是光杠杆镜架,其结构如图1所示,光杠杆是一个带有可旋转的平而镜的支架,平而镜的镜而与三个足尖决左的平面垂直,其后足即杠杆的支脚与被测物接触,当杠杆支脚随被测物上升或下降微小距离△厶时,镜面法线转过一个&角,而入射到望远镜的光线转过2&角,如图2所示.当&很小时,

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

拉伸法测量金属丝弹性模量带大数据处理

本科实验报告(详写)【实验目的】 1.掌握拉伸法测量金属丝弹性模量的原理和方法。 2.学习光杠杆测量微小长度的变化的原理和方法。 3.进一步学习用逐差法,作图法处理数据。 4.多种长度测试方法和仪器的使用。 【实验内容和原理】 1.测定金属丝弹性模量 假定长为L、横截面积为S的均匀金属丝,在受到沿长度方向的外力F作用下伸长?L,根据胡克定律可知,在弹性限度内,应变?L /L与外F/S成正比,即 (E称为该金属的杨氏模量)(1)由此可得:

(2) 其中F,S 和L 都比较容易测量;?L 是一个很小的长度变化量。 2.光杠杆测量微小长度变化 当金属丝受力伸长?L 时,光杠杆后脚1f 也随之下降?L ,在θ较小(即?L << b )时,有 ?L / b = tan θθ≈ (1) 若望远镜中的叉丝原来对准竖尺上的刻度为0r ;平面镜转动后,根据广的反射定律,镜面旋转θ,反射线将旋转2θ,设这时叉丝对准新的刻度为1r 。令?n= |1r –0r |,则当2θ很小(即?n <

i n ?L 。其中2D/b 称为光杠杆的放大倍数。 bl d FLD E 28π= (3) 4.为减小实验误差依次在砝码钩上挂砝码(每次1kg ,并注意砝码应交错放置整齐)。待系统稳定后,记下相应十字叉丝处读数(i=1,2,……,6)。依次减小砝码(每次1kg ),待稳定后,记十字叉丝处相应读数(i=1,2,……,6)。取同一负荷刻度尺读数平均值 2n n n ' i i i += (i=1,2, (6) 5.按逐差法处理数据的要求测量弹性模量。 计算对应3Kg 负荷时金属丝的伸长量 i 3i i n -n n +=? (i=1,2,3,) 及伸长量的平均值 3 n n 3 1 i i ∑=?= ? 将n ?,L,D,K,d 各测量结果代入(3)式,计算出待测金属丝的弹性模量及测量结果的不确定度。 22222 2)()()()(4)()(F K n d D L E E F K n d D L ?+?+??+?+?+?=?? (4) 【实验仪器】

《大学物理(一)》实验报告

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称:速度、加速度的测定和牛顿运动定律的验证 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:学号: 年级专业层次: 学习中心: 提交时间:2020 年04月05 日

一、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5.掌握验证物理规律的基本实验方法。 二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 (1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。 2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定

目录 一、弹性模量和泊松比 (2) 二、弹性模量测定方法 (2) 三、泊松比测定方法 (4) 四、结论 (4) 五、参考文献 (4)

一、弹性模量和泊松比 金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。 二、弹性模量测定方法 铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为: E=σ/ε 式中E为弹性模量;σ为正应力;ε为相应的正应变。 铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。 1.静态法 1.1测量原理 静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。 拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。由上式有: E=σ/ε=FL/A△L 式中各量的单位均为国际单位。 可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。 应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。 由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。 拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,

弹性模量的测定整理

弹性模量的定义及其相互关系 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量(Elastic Modulus )。弹性模量的单位是GPa 。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 线应变:对一根细杆施加一个拉力F ,这个拉力除以杆的截面积S ,称为“线应力”,杆的伸长量dL 除以原长L ,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)。 剪切应变:对一块弹性体施加一个侧向的力f (通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a 称为“剪切应变”,相应的力f 除以受力面积S 称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 。 体积应变:对弹性体施加一个整体的压强P ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E 是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 说明:弹性模量只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。 泊松比(Poisson's ratio ),以法国数学家 Simeom Denis Poisson 为名,是横向应变与纵向应变之比值它是反映材料横向变形的弹性常数。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比ν。 泊松比ν与杨氏模量E 及剪切模量G 之间的关系 ()()??? ? ??+=+==ννν1G 2orE 12E orG 1-G 2E 材料弹性模量的测试方法 弹性模量的测试有三种方法:静态法、波传播法、动态法。 静态法测试的是材料在弹性变形区间的应力-应变,静态法指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,根据应力和应变计算弹性模量。静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会,且测试精度低,测试结果波动大。另外,静态法只能对材料的杨氏模量进行测定,不能测试材料的剪切模量及泊松比。 其主要缺点是: 1.应力加载的速度会影响弹性模量的数值 2.脆性材料如陶瓷无法测量 3.不能在高温下测试.在高温下,材料发生蠕变,使得应变测试值增大。 超声波法:测试超声波在试样中的传播时间及试样长度得到纵向或横向传播速度,然后计算

相关主题
文本预览
相关文档 最新文档