导数在高中数学中的应用探讨
- 格式:doc
- 大小:25.00 KB
- 文档页数:6
高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。
本文将从几个不同的角度来讨论导数的应用。
一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。
通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。
例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。
二、切线与法线导数还可以用来求解函数的切线和法线方程。
对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。
同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。
这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。
三、最值问题导数也可以用来解决函数的最值问题。
对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。
因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。
这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。
四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。
当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。
而导数在某一点上发生跃变时,可以判断该点为函数的拐点。
这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。
总结起来,导数的应用非常广泛。
无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。
因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。
只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。
简述导数在高中数学新课程中的地位与作用导数(“导函数”的简称)是一类特殊的函数,利用导数可以求曲线的切线,判断或论证函数的单调性,求函数的极值和最值,以及利用导数解决生活中的优化问题等。
导数在函数中的应用很广,所以,导数是分析和解决问题的有效工具。
本文通过探讨导数在新课程中的地位以及在数学解题中的应用,以拓展学生的解题思路,提高学生分析和解决问题的能力。
高中数学是由必修课程和选修课程两部分构成。
必修课程是整个高中数学课程的基础,选修课程是在完成必修课程学习的基础上,希望进一步学习数学的学生根据自己的兴趣选修。
选修课程由系列1、2、3、4等组成,在系列1和2中都选择了导数及其应用。
显然,导数的重要性不言而喻。
一、有利于学生理解函数的性质在高中阶段学习函数时,主要学习函数的定义域、解析式、值域、单调性、奇偶性、周期性、有界性等。
我们知道,函数的这些性质都可以通过函数的图像表示出来。
因而,如果能准确作出函数的图像,函数的性质就一目了然。
如果所涉及的函数是基本初等函数,用描点法就可以作出函数的图像。
但是,如果所涉及的函数是非基本初等函数,如函数y=x2-2x2+x-1,y=ex-x-1等,仅用描点法就很难准确地作出图像。
但是,掌握了导数的知识之后,学生就可以利用函数的一阶导数判定函数的单调区间、极值点和最值点;利用极限思想找出其水平渐近线和垂直渐近线,然后再结合描点法,就能较为准确地作出函数的图像。
这样就有利于学生理解函数的性质,同时也拓宽了学生的知识面。
1.利用导数求函数的解析式用解析式表示函数的关系,便于研究函数的性质,而利用导数求函数的解析式,函数的一些基本性质就会显得更加清晰。
例1.设函数y=ax3+bx2+cx+d的图像与y轴交点为P点,且曲线在P点处的切线方程为12x-y-4=0,若函数在x=2处取得极值0,试确定函数的解析式。
解析:因为函数y=ax3+bx2+cx+d的图像与y轴交点为P点,所以,P点的坐标为(0,d),又曲线在P点处的切线方程为y=12x-4,P点坐标适合方程,从而得:d=-4,又切线斜率k=12,故在x=0处的导数y′x=0=12,而y′=3ax2+2bx+c,y′x=0=c,从而得出:c=12,又函数在x=2处取得极值0,所以,12a+4b+12=08a+4b+20=0解得:a=2,b=-9。
导数在高中数学解题中的应用探究作者:谯洪斌来源:《新课程研究·上旬》2019年第02期摘要:导数是高中数学的重要内容,导数知识和其他数学知识结合可以产生多种多样的新题型,这类题型立意巧妙、观点新颖,成了考试题中的亮点,也成了学生的难题。
文章阐述了高中数学导数的概念,分析了导数在高中数学解题中的具体应用思路,并提出通过做题探索解题方法,使学生掌握利用导数解题的能力,提高学生的创造性能力。
关键词:导数;高中数学;解题应用作者简介:谯洪斌,四川省南充高级中学教师。
(四川南充 637205)中图分类号:G633.6 文献标识码:A 文章编号:1671-0568(2019)04-0052-02高考数学对学生的创新意识的要求越来越高。
以能力立意是高考数学命题的指导思想,命题方式也在不断变化,而导数解题的知识点是命题的重点。
导数是高中数学的重点内容,常与函数、方程、数列、不等式、几何、向量、线性规划以及实际生活等内容融合在一起。
导数问题巧而精,学生要解答正确并非易事,需要学生具备发散性思维,有足够的耐心,有自主学习和独立思考的能力。
本文对导数在高中数学解题中的应用进行分析,旨在探索规律,揭示方法。
一、高中数学中导数的含义导数是在函数概念中出现的,具有函数的基本性质,高中数学教材上写明导数展现了函数的变化趋势,从学习简单的初等函数开始,导数就可以在其中得到运用,求导总是能使问题迎刃而解。
所以,高中的导数教学主要是通过求导解决实际题目来进行的,最终要使学生养成用导数解决数学难题的思维。
近几年的高考试题越来越多涉及导数问题,导数题型出现的频率越来越高,所以高中数学教学的重点就是让学生运用导数解决数学试题,体现出数学的实用性。
教师要教会学生灵活运用导数,学会快速从问题中发现是否需要求导,这是解决题目的突破点,也是导数学习的重难点,需要教师在设计教学方案和课堂讲授时加以重视。
二、导数在高中数学解题中的实际运用融合数学思想,强化数学思维能力的培养是当今时代所需。
高中数学函数与导数的应用导数作为高中数学中的重要概念,被广泛应用于数学问题的求解过程中。
通过对函数的导数进行分析和运算,我们可以得到许多有用的信息,从而帮助我们更好地理解和解决实际问题。
本文将从几个具体的应用场景出发,探讨函数与导数在高中数学中的应用。
一、函数的极值与最值问题函数的极值和最值问题是数学中常见的优化问题。
通过求取函数的导数,我们可以得到函数的极值点以及对应的函数值。
具体而言,当函数的导数等于零时,对应的自变量取值即为函数的极值点。
而根据导数的正负性可以确定函数在极值点附近的取值情况。
通过对求导结果的分析,我们可以轻松地确定函数的极大值或极小值。
二、函数的凹凸性和拐点问题对于函数的凹凸性和拐点问题,我们可以通过函数的二阶导数来进行研究。
二阶导数表示了函数变化率的变化率,也即函数的凹凸性。
当函数的二阶导数大于零时,函数在该点附近上凸;当函数的二阶导数小于零时,函数在该点附近上凹。
通过对函数的二阶导数进行符号判断,我们可以判断函数在指定自变量范围内的凹凸性,从而更好地理解函数的性质。
而拐点则是指函数曲线的凹凸方向发生改变的点。
三、函数的图像与导数的关系函数的导数不仅可以帮助我们研究函数的数学性质,还可以直接影响函数的图像。
例如,当函数的导数为正时,表示函数在该点附近单调上升;当函数的导数为负时,表示函数在该点附近单调下降。
通过对函数的导数进行正负性判断,我们可以绘制函数的递增、递减区间。
另外,导数还可以帮助我们确定函数的拐点、极值点和最值点等特殊点,从而更好地描述函数的图像。
四、函数的模型与导数的运用函数的模型在实际问题中具有广泛的应用。
通过对问题进行建模,我们可以将实际问题转化为数学问题,并利用函数与导数的知识进行求解。
例如,在物理问题中,我们可以通过建立运动物体的位移函数,并通过求导计算速度和加速度等相关信息。
在经济学问题中,我们可以建立成本、收益或利润函数,通过求导求取最大或最小值,寻找最优解。
导数在高中数学课程中的应用新乡市一中数学组 李凤德[摘 要]导数是联系高等数学与初等数学的纽带,高中阶段引进导数的学习有利于学生更好地理解函数的性态,掌握函数思想,搞清曲线的切线问题,学好其他学科并发展学生的思维能力.因而在中学数学教学及解题过程中,可以利用导数思想解决诸如函数(解析式、值域、最(极)值、单调区间等)问题、切线问题、不等式问题、数列问题以及实际应用等问题.[关键词]导数 新课程 应用一、 知识地位分析导数是高中数学新教材中新增的知识之一,体现了现代数学思想,在研究函数性质时,有独到之处。
纵观2010年各地的新课程高考试卷,大多数以一个大题的形式考察这部分内容。
内容主要是与单调性、最值、切线这三方面有关。
今年是我省新教材实施的第一届高考,虽然去年已然考察这方面的内容,但作为新教材的新增内容,仍应引起我们足够的重视。
复习中注重导数在解决科技、经济、社会中的某些实际问题中的应用。
二、 导数在解题中的应用导数作为高中新教材的新增内容之一,它给高中数学增添了新的活力,特别是导数广泛的应用性,为解决函数、切线、不等式、数列、实际等问题带来了新思路、新方法,为我们展现出了一道亮丽的风景线,也使它成为新教材高考试题的热点和命题新的增长点.这几年的高考命题趋势表明:导数已经由以往的“配角”地位上升到“主角”,成为分析问题和解决问题的重要工具.将导数与传统内容结合,不仅能加强能力的考查力度,而且也使试题具有更广泛的实践意义.下面举例探讨导数的应用.(一)利用导数解决函数问题⒈利用导数求函数的解析式用解析式表示函数关系,便于研究函数的性质,而利用导数求函数的解析式,函数的一些基本性质就会显得更加的明了.例1 设函数d cx bx ax y +++=23的图像与y 轴交点为P 点,且曲线在P 点处的切线方程为0412=--y x ,若函数在2=x 处取得极值0,试确定函数的解析式.解 因为函数d cx bx ax y +++=23的图像与y 轴交点为P 点,所以P 点的坐标为()d ,0,又曲线在P 点处的切线方程为412-=x y ,P 点坐标适合方程,从而4-=d ,又切线斜率12=k ,故在0=x 处的导数120='=x y ,而c bx ax y ++='232,c y x ='=0,从而12=c ,又函数在2=x 处取得极值0,所以⎩⎨⎧=++=++.,020********b a b a 解得2=a ,9-=b ,所以所求函数解析式为4129223-+-=x x x y . ⒉利用导数求函数的值域求函数的值域是中学数学中的重点,也是难点,方法因题而异,不易掌握.但是,如果采用导数来求解,则较为容易,且一般问题都可行.例2 求函数212)(+-+=x x x f 的值域.分析 先确定函数的定义域,然后根据定义域判断)(x f '的正负,进而求出函数)(x f 的值域.解 显然,)(x f 定义域为[)∞+-,21,由于 12221222221121)(+++-+=+-+='x x x x x x x f , 又 1222721222++++=+-+x x x x x , 可见当21->x 时,0)(>'x f .所以212)(+-+=x x x f 在[)∞+-,21上是增函数.而26)21(-=-f ,所以函数212)(+-+=x x x f 的值域是)⎡+∞⎣,. ⒊利用导数求函数的最(极)值求函数的最(极)值是高中数学的重点,也是难点,是高考经常要考查的内容之一,它涉及到了函数知识的很多方面,用导数解决这类问题可以使解题过程简化,步骤清晰,也容易掌握,从而进一步明确了函数的性态.一般地,函数)(x f 在闭区间[]b a ,上可导,则)(x f 在[]b a ,上的最值求法:(1) 求函数)(x f 在()b a ,上的极值点;(2) 计算)(x f 在极值点和端点的函数值;(3) 比较)(x f 在极值点和端点的函数值,最大的是最大值,最小的是最小值.例3 求函数x x x f 3)(3-=在[]233,-上的最大值和最小值. 分析 先求出)(x f 的极值点,然后比较极值点与区间端点的函数值,即可得该函数在区间[]233,-上的最大值和最小值. 解 由于)1)(1(3)1(333)(22-+=-=-='x x x x x f ,则当[)1,3--∈x 或(]23,1∈x 时,0)(>'x f ,所以[]13--,,[]231,为函数)(x f 的单调增区间;当()1,1-∈x 时,0)(<'x f ,所以[]11,-为函数)(x f 的单调减区间. 又因为18)3(-=-f ,2)1(=-f ,2)1(-=f ,9)23(-=f ,所以,当3-=x 时,)(x f 取得最小值18-;当1-=x 时,)(x f 取得最大值2.⒋利用导数求函数的单调区间函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.函数的单调性与函数的导数密切相关,运用导数知识来讨论函数单调性时,结合导数的几何意义,只需考虑)(x f '的正负即可,当0)(>'x f 时,)(x f 单调递增;当0)(<'x f 时,)(x f 单调递减.此方法简单快捷而且适用面广.例4 求x x x f 3)(3+=的单调区间.分析 应先确定函数)(x f 的定义域,再利用导数讨论其单调区间.解 显然,)(x f 定义域为()()+∞⋃∞-,00,,又2222)1)(1)(1(333)(x x x x x x x f -++=-=', 由0)(>'x f ,得1-<x 或1>x ;又由0)(<'x f ,得01<<-x 或10<<x ,所以)(x f的增区间为()1-∞-,和()∞+,1,减区间为()01,-和()10,. (二)利用导数解决切线问题⒈求过某一点的切线方程此种题型分为点在曲线上和点在曲线外两种情况,)(0x f '的几何意义就是曲线在点))(,(00x f x P 处切线的斜率,过P 点的切线方程为))(()(000x x x f x f y -'=-,但应注意点))(,(00x f x P 在曲线)(x f y =上,否则易错. 例5(2009·衡阳模拟)求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.解 f ′(x )=3x 2-6x +2.设切线的斜率为k .分析 此类题型为点不在曲线上求切线方程,应先设出切点坐标,表示出切线方程,把已知点代入方程,求出切点坐标后,再求切线方程.(2009·衡阳模拟)求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.解 f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,② 由①②得x 0=32,k =y 0x 0=-14. ∴所求曲线的切线方程为y =-14x .⒉求两曲线切线方程例6 已知抛物线x x y C 221+=:和a x y C +-=22:,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,求公切线l 的方程.分析 本题也可用常规方法求解,但运算量大,过程烦琐,而利用导数知识无疑为解决这类问题提供了新的,简捷的方法,即先分别求出两曲线的切线,利用它们是同一直线来建立关系求解.解 由x x y C 221+=:,得22+='x y ,所以曲线1C 在点)2,(1211x x x P +的切线方程是))(22()2(11121x x x x x y -+=+-, 即211)22(x x x y -+=.(1)由a x y +-=2,得x y 2-=',所以曲线2C 在点),(222a x x Q +-的切线方程是)(2)(2222x x x a x y --=+--, 即a x x x y ++-=2222.(2)若l 是过P 与Q 的公切线,则(1)(2)表示的是同一直线,所以⎩⎨⎧+=--=+.,a x x x x 222121222 消去2x ,得0122121=+++a x x , 由题意知0)1(244=+⨯-=∆a ,所以21-=a ,则2121-==x x ,即点P 与Q 重合,此时曲线1C 和2C 有且仅有一条公切线,且公切线方程为014=+-y x .(三)利用导数解决不等式问题纵观这几年的高考,凡涉及到不等式证明的问题,其综合性强、思维量大,因此历来是高考的难点.利用导数证明不等式,就是利用不等式与函数之间的联系,直接或间接等价变形后,结合不等式的结构特征,构造相应的函数.通过导数运算判断出函数的单调性,将不等式的证明转化为函数问题.例7 求证:不等式)1(2)1ln(222x x x x x x +-<+<-在()+∞∈,0x 上成立. 分析 通过作差,构造函数)2()1ln()(21x x x x f --+=, 和)1ln()1(2)(22x x x x x f +-+-=, 再通过对)(1x f 和)(2x f 求导来判断.证明 构造函数)2()1ln()(21x x x x f --+=,则01111)(21>+=+-+='x x x x x f . 得知)(1x f y =在[)∞+,0上单调递增,又因为0>x ,所以0)0()(11=>f x f ,即2)1ln(2x x x ->+成立. 又构造函数)1ln()1(2)(22x x x x x f +-+-=,则 0)1(4211)1(42441)(222222>+=+-+-+-='x x x x x x x x f . 得知)(2x f y =在[)∞+,0上单调递增,又因为0>x ,所以0)0()(22=>f x f ,即)1ln()1(22x x x x +>+-成立. 综上所述,原命题成立.(四)利用导数解决数列问题数列是高中数学中的一个重要部分,而数列求和是中学阶段数列部分的重要内容之一,有许多初等解决方法.事实上数列可看作是自变量为正整数的特殊的函数,所以可以利用数列和函数的关系,再运用导数来解决数列求和的有关问题.例8 求和:12321-++++n nx x x (其中0≠x ,1≠x ).解 注意到1-n nx 是n x 的导数,即1)(-='n n nx x ,可先求数列{}n x 的前n 和x x x x x x x x x n n n--=--=+++11)1(12 , 然后等式两边同时对x 求导,有12321-++++n nx x x2121)1(1)1()1()1]()1(1[x x n nx x x x x x n n n n n -++-=--+-+-=++.例9 求和:n n n n n n nC C C C )1(32321---+- .解 因为n n n n n n nn x C x C x C x C x )1(1)1(33221--+-+-=- . 上式两边对x 求导,有123211)1(2)1(---++-+-=--n n n n n n n n x nC x C x C C x n ,再令1=x ,可以得到0)1(32321=---+-n n n n n n nC C C C .(五)利用导数解决实际问题利用导数,不仅可以解决函数、切线、不等式、数列问题,而且还可以解决一些实际应用问题.学习的最终目的,是要求学生具有运用导数知识解决实际问题的意识、思想方法以及能力.近几年,高考越来越注重对实际问题的考查,比如最优化问题、最低成本问题等,而利用导数解决这些问题非常方便.例10 甲乙两个村子在一条河的同侧,甲村位于河岸的岸边A 处,乙村位于离河岸km 40的B 处,乙村到河岸的垂足D 与A 相距km 50.两村要在岸边合建一个供水站C ,从供水站到甲村、乙村的水管费用分别为千米元/3a 、千米元/5a ,问供水站C 建在何处才能使水管费用最省?(图1)分析 本题难点是如何把实际问题中所涉及的几个变量转化成函数关系式.技巧与方法主要有:根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变化,构造相应的函数关系,随后用导数的知识来解决问题.解 如图1,设点C 距点D xkm ,则 x AC -=50,40=BD ,2240+=x BC .总的水管费用为22405)50(3)(++-=x a x a x f (500<<x ). 又224053)(++-='x axa x f ,令0)(='x f ,则30=x .在()500,上,)(x f 只有一个极值点,根据实际问题的意义,知30=x 处取得最小值,此时2050=-=x AC .所以供水站C 建在距甲村km 20处才能使水管费用最省.三、 结束语 A B C Dx 图1导数及其应用是微积分学的重要组成部分,是解决许多问题的有力工具,它全面体现了数学的价值:既给学生提供了一种新的方法,又给学生提供了一种重要的思想.总之,开设导数不仅促进学生全面认识了数学的价值,而且发展了学生的辩证思维能力,也为今后进一步学好微积分打下基础.因此,在高中阶段为学生开设导数及其应用具有深刻的意义.。
教学·策略高中数学导数教学中分类讨论法的应用文|荣荟翠教师对导数教学的各方面内容进行分类讨论,可以帮助学生了解导数基础知识,让学生高效地掌握导数内涵,并灵活解决导数问题。
一、简化解题步骤从近些年的高考题中我们不难看出“导数”已经成为重点考查的内容,利用导数求函数的最值问题是常见的题型。
在解答此类导数问题时,就可应用分类讨论法对题目进行分析,通过分类与逐层分析,可以让解题过程更加简单,且能让学生的解题步骤更加清晰、明确,对于知识的掌握也会更加深入。
在应用分类讨论法的过程中,学生可以逐步明确函数的性质,掌握问题的本质。
在具体的应用过程中,教师需以具体的题型为引导,让学生针对性地进行分析与讨论,通过化整为零的方式进行分类,降低问题的难度。
一般情况下,函数f (x )在区间[a ,b ]上可导,那么f (x )在区间[a ,b ]上最值的求法有以下三种:(1)求出f (x )在区间[a ,b ]上的极值;(2)计算f (x )在极值点和端点的函数值;(3)对f (x )极值点和端点的函数值进行比较,写出最大值、最小值。
案例一:已知函数f (x )=x 3-3x ,求函数在区间[-3,2]的最大值和最小值。
解析:由题中f (x )=x 3-3x 可以得出f ′(x )=3x 2-3=3(x +1)(x -1),则当x ∈(1,2]时,f (x )>0,所以[-3,-1],[1,2]是函数f (x )的单调增区间,当x ∈[1,1]时,函数f ′(x )>0,所以可知[-1,1]是函数f (x )的单调减区间。
又因f (-3)=-18,f (-1)=2,f (1)=-2,当x =-3时,f (x )取得最小值,为-18,当x =-1或者2时,f (x )取得最大值,为2。
二、解决导数零点问题导数是学习高等数学知识的基础,以导数为基础的各种函数问题成为重点学习的内容。
在求解导数题目的过程中我们发现,题目中常包含多种参数,随着参数的改变,解题的难度也会增加,所以通过分类讨论的方式进行答题非常关键。
56学习版目前,在高中数学教学中,我们数学教师可以发现“导数”这部分内容近几年来一直是高考考查的内容,它主要是作为我们研究高中数学函数的一些性质的工具。
“导数”在高中数学中的引入应用,让我们数学教师解决一些问题,有了更加简捷的方法。
下面我结合自己的一些教学实例,浅谈“导数”在高中数学解题中的一些应用。
一、利用导数研究高中数学函数的单调性在高中数学教学中,如果在一个区间内,函数的导数>0,则在此区间内单调递增;如果在一个区间内,函数的导数<0,则在此区间内单调递减。
例1:证明f(x)==ln(1+x)-x+在(0,+∞)上单调递增。
证明:f'(x)=-1+x=∵x>0∴f'(x)>0∴f(x)在(0,+∞)上单调递增。
该例题利用导数研究函数的单调性没有什么难度,只要掌握导数对原函数的单调性的影响这个知识点就没问题了。
求解中我们数学教师可以看出对函数求导的掌握也是解题的一个关键所在。
求函数的导数极少单独命题,但是,在运用导数研究高中数学函数的过程中,求导数是首要的步骤,因而理解和掌握求导数的基本方法并能灵活运用十分重要。
在高中数学教学中,利用导数解决单调性问题的考查形式有时延伸为证明不等式,此类证明前提要构造函数。
例2:已知函数f(x)=ln 求证x ∈(0,1)时,f(x)>2(x+)。
证明:令g(x)=f(x)-2(x+)= ln-2(x+),得g'(x)=+-2(1+x 2)=,∵x ∈(0,1)∴g'(x)>0∴g(x)在(0,1)上单调递增,从而有g(x)>g(0)=0所以x ∈(0,1)时,f(x)>2(x+)。
构造函数是解决导数问题重要的基本方法之一,但如何合理的构造函数,让问题能够顺利的解决成了这类问题的关键所在。
本例的函数的构造相对来说一目了然不等式左右两边的函数都是我们熟悉的函数,直接构造计算量是我们能接受范围内的,因此直接构造问题就迎刃而解。
——数学教研教学案例【摘要】导数是高中数学中的基础性概念,其在对于数学问题的解决都能够起到重要的辅助性作用,为此,本文从不等式、函数、切线等方面入手,对导数在高中数学解题中的具体应用进行了探究。
【关键词】导数;不等式;函数;切线导数在高中数学解题中的应用分析马梦雪【滨州实验中学,山东滨州256606】从近几年来的高考数学试卷来看,导数已经逐渐成为高考中的重要考点,而为了充分体现答题者解决问题的综合能力,其试题一般会从方程组、不等式、数列、函数等多方面进行交汇命题,因此在解决数学问题的过程中,我们必须要将对导数知识的运用重视起来。
一、导数在函数问题中的应用在函数问题中,导数通常会用于对函数极值、最值与单调性的判断。
一般来说,对于单调性的判断通常需要依靠函数单调性的定义,因此,在解决一些比较复杂的函数问题时,想要判断其单调性就会显得比较困难,而借助导数知识,则可以在函数区间内求导,若令f`(x )>=0,则解得的x 区间就是函数f (x )的递增区间;若令f`(x )<=0,则解得的x 区间就是函数f (x )的递减区间,这样一来,就可准确的判断出函数的单调性。
而在函数单调性的基础上,自然就可以通过区间的对应来判断出函数的最值与极值。
例1:设函数f`(x )=x 2+3x-4<0,求y=f (x-1)的单调区间。
解析:由f`(x )=x 2+3x-4<0可知,-4<x<1,故函数f (x )在区间(-4,1)内单调递减,而y=f (x-1)的单调递减区间则为(-3,2)。
二、导数在不等式问题中的应用高中数学的不等式问题大多与函数知识相结合,因而在面对这类问题时,就可以通过不等式构造出函数f (x ),之后利用导数来判断函数f (x )在某一区间内的单调性,并依据该区间的单调性来完成对的不等式求证。
例2:当x>0时,求证x-x 2/2<ln(1+x ).证明:设f (x )=x-x 2-(1+x )(x<0),则f`(x )=-x 2/1+x 因为x>0,所以f`(x )<0,故f (x )在(0,+∞)上递减,所以当x>0时,f (x )>f (0)=0,即x-x 2-(1+x )<0,由此可判断x-x 2/2<ln(1+x )成立在例2中,就是将不等式x-x 2/2<ln(1+x )构造成函数f (x )=x-x 2-(1+x )并进行求导,之后对函数f (x )在区间(0,+∞)上的单调性进行判断,进而证明不等式成立。
导数在高中数学中的应用_数学教育
导数是高中数学中非常重要的一章节,它不仅具有重要的理论
意义,而且在实际应用中也发挥着巨大的作用。
以下列举了一些导
数在高中数学中的应用:
1. 极值问题:通过求导数可得到函数的极值,即最值。
在应用
中常常需要求某个量的最大值或最小值,例如对于一个正方形,我
们需要求出其面积的最大值,就可以通过对正方形的边长求导得到。
2. 切线和法线:通过求导数我们可以得到某一点处的切线方程
及其斜率,同时又可以得到该点处的法线方程及其斜率,这对于研
究曲线的性质十分有用。
3. 曲率问题:导数还可以用来求曲线在某一点处的曲率,由此
可以得到曲线的曲率半径等重要参数,同时也可以帮助我们了解曲
线的形状。
4. 泰勒展开:泰勒展开是一种重要的数学工具,它可以利用函
数在某一点处的导数来逼近函数的值,从而在数值计算中起到非常
重要的作用。
总之,在高中数学中学习导数,不仅可以帮助我们深刻理解函
数的性质,同时也为我们今后的学习和工作打下了坚实的基础。
导数在高中数学解题中的应用随着高中数学改革的进一步深化,高中数学教学中更多地突出知识的实用性和简洁性.导数是高中数学新教材中重要的知识之一,体现了现代数学思想.这几年的高考命题趋势表明:导数已经由以往的“配角”上升到“主角”,成为分析问题和解决问题的重要工具.将导数与传统内容结合,不仅能加强能力的考查力度,而且也使试题具有更广泛的实践意义.导数知识在研究解决实际问题中有着广泛的应用,主要应用于研究函数的单调区间、最值以及曲线的切线、某些不等式的证明等问题,所以,在高中教学中越来越显现出其重要性.导数对中学数学也有重要的指导作用.下面举例探讨导数在解题中的应用.当然,导数解决的问题还很多,我在这里仅举了其中几个例子.一、利用导数求函数的最值求函数的最值是高中数学的重点,也是难点,是高考经常要考查的内容之一,它涉及函数知识的很多方面,用导数解决这类问题可以使解题过程简单化,步骤清晰,也容易掌握,从而进一步明确了函数的性质.一般的,函数f(x)在闭区间[a,b]上可导,则f(x)在[a,b]上的最值求法:(1)求函数f(x)在(a,b)上的极值点;(2)计算f(x)在极值点和端点的函数值;(3)比较f(x)在极值点和端点的函数值,最大的是最大值,最小的是最小值.例1.求函数f(x)=x3-3x在[-3,2]上的最大值和最小值.分析:先求出f(x)的极值点,然后比较极值点与区间端点的函数值,即可得该函数在区间[-3,2]上的最大值和最小值.解:由于f′(x)=3x2-3=3(x2-1)=3(x+1)(x-1),则,当x∈[-3,-1)或x∈(1,2]时,f′(x)>0,所以[-3,-1],[1,2]为函数f(x)的单调增区间;当x∈(-1,1)时,f′(x)<0,所以[-1,1]为函数f(x)的单调减区间.又因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以,当x=-3时,f(x)取得最小值-18;当x=-1或2时,f(x)取得最大值2.二、利用导数判别函数的单调性函数的单调性是函数的最基本性质之一,是研究函数所要掌握的最基本的知识.用单调性的定义来处理单调性问题有很强的技巧性,较难掌握好,而用导数知识来判断函数的单调性简便而且快捷.令f′(x)=0得x=1,又当x=0时导数不存在;以0和1为分界点将f(x)的定义域(-∞,+∞)分成三个区间(-∞,0),(0,1),(1,+∞).先将f(x)在各区间内单调增减性列表如下:由此可见,f(x)的单调增区间为(-∞,0),(1,+∞),单调减区间为(0,1).三、用导数证明不等式利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.其主要思想是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.例3.当x∈(0,π)时,证明不等式sinx<x成立.证明:设f(x)=sinx-x,则有f′(x)=cosx-1由已知得x∈(0,π),则有f′(x)<0. .因为f(x)=sinx-x在x∈(0,π)内单调递减,而f(0)=0,所以f(x)=sinx-x<f(0)=0,故当有x∈(0,π)时,sinx<x成立.一般的,证明f(x)<g(x),x∈(a,b),可以构造函数f(x)=f(x)-g(x),如果f′(x)<0,则f(x)在(a,b)上是减函数,同时若f (a)≤0,由减函数的定义可知,x∈(a,b)时,有f(x)<0,即证明了f(x)<g(x).四、导数在求曲线的切线中的应用导数的几何意义:如果函数f(x)的导数存在,则的函数f(x)在x=x0处的导数即为该函数在点(x0,f(x0))切线的斜率.利用这个我们可以求出曲线的切线方程.例4.已知曲线l∶y=x2-2x+a,求过点p(2,-1)的曲线l的切线方程.解:因y=x2-2x+a,所以y′=2x-2,则当x=2时,y=a,y′=2.①当a=-1时,点p(2,-1)在曲线l上,故过点p的曲线l的切线方程为y-(-1)=2(x-2),即2x-y-5=0,②当a≠-1时,点p不在l上,设曲线l过点p的切线的切点是(x0,y0),则切线方程为y-y0=(2x0-2)(x-x0)且点p(2,-1)在此切线方程上,所以有-1-y0=(2x0-2)(2-x0),即y0=2x20-6x0+3.又y0=x20-2x0+a,则有x20-2x0+a=2x20-6x0+3,即x20-4x0+(3-a)=0,δ=16-4(3-a)=4(a+1),当a<-1时,δ<0,切线不存在.五、利用导数解决数列问题数列是高中数学中的一个重要部分,而数列求和是中学阶段数列部分的重要内容之一,有许多初等解决方法.事实上数列可看作是自变量为正整数的特殊的函数,所以可以利用数列和函数的关系,再运用导数来解决数列求和的有关问题.例5.求和:1+2x+3x2+…+nxn-1(其中x≠0,x≠1).(作者单位陕西省定边县职教中心)。
数学专业毕业论文-导数在高中数学教学中的应用导数在高中数学中的应用学生姓名院系名称数学与软件科学学院专业名称数学与应用数学班级 2008级班学号指导教师四川师范大学教务处二?一一年五月导数在中学数学中的应用学生: 指导老师:内容摘要:导数的思想方法在中学数学中是非常重要的, 在解决许多问题上起到居高临下和以简化繁的作用.本文着重运用导数的基本知识和理论, 来解决中学数学里的函数的图像、单调性、最值等函数问题;在掌握导数的相关概念的基础上应用导数作出特殊函数的图像;应用导数解题的一般方法证明某些不等式或等式的成立问题;解决数列的有关问题;再根据导数所具有的几何意义在解析几何中切线相关问题及求夹角问题等几何问题进行了一些探讨.关键字:导数函数不等式解析几何Derivatives in high school mathematics teaching Abstract: the thinking method of derivative in middle school mathematics is very important, except the guiding role in solve many problems as commandingand to simplify the numerous role. In this paper the basic knowledge and using derivatives, to solve the middle school mathematics theory of the function of image, monotonicity and most value function problem,Inmaster derivative based on the concept of application related to make a special function of images of derivative,The general method of solving application derivative to prove some inequality or equation established problem, Solve problems related series, Again according to thegeometrical meaning which derivative in analytic geometry in tangent related problems and geometric problems for Angle problems are analyzed .Key words: derivative function inequality Analytic geometry目录1 引言 (1)2.1 函数连续的定义 (2)2.2 导数的定义 ....................................... 2 3 导数在函数问题中的应用 (3)3.1 利用导数作函数的图像 (3)3.2 利用导数求参数的值 (4)3.3 判断函数的单调性 (5)3.4 研究方程的根 (5)3.5 求函数极值或最值 ................................. 6 4 导数在证明等式和不等式问题中的应用 (8)4.1导数在不等式证明中的应用 (8)4.2 在恒等式证明方面的应用 ........................... 9 5 导数在数列问题中的应用 ................................ 9 6 导数在解析几何问题中的应用 (10)6.1 利用导数求解切线方程 (10)6.2 求中点弦方程 (11)6.3 证明与中点弦有关的不等式 (11)6.4 求与中点弦有关的轨迹问题 ........................ 11 参考文献 (12)导数在中学数学中的应用高中数学中导数的引入为我们研究函数及其对应的曲线带来很大的方便, 尤其是可以利用导数来解决函数的单调性问题和最值问题, 更可以用导数来解决部分结合问题.另外导数的工具性和导数的几何意义也使得导数与解析几何、不等式、函数、甚至数列知识更加紧密的联系在一起.近年来, 导数的相关知识在高考中的地位日益突出, 本文就简单谈谈导数在函数、不等式、数列、解析几何中的应用.1 引言导数的思想有着悠久的历史, 公元前三世纪, 古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中, 就隐含着近代积分学的思.到了十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作, 如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论.为微积分的创立做出了贡献.十七世纪下半叶, 在前人工作的基础上, 英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作, 虽然这只是十分初步的工作.他们的最大功绩是把两个貌似毫不相关的问题联系在一起, 一个是切线问题(微分学的中心问题), 一个是求积问题(积分学的中心问题).牛顿在1671年写了《流数法和无穷级数》, 这本书直到1736年才出版, 它在这本书里指出, 变量是由点、线、面的连续运动产生的, 否定了以前自己认为的变量是无穷小元素的静止集合.他把连续变量叫做流动量, 把这些流动量的导数叫做流数.牛顿在流数术中所提出的中心问题是:已知连续运动的路径, 求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法).德国的莱布尼茨是一个博才多学的学者, 1684年, 他发表了现在世界上认为是最早的微积分文献, 这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法, 它也适用于分式和无理量, 以及这种新方法的奇妙类型的计算》.就是这样一片说理也颇含糊的文章, 却有划时代的意义.他以含有现代的微分符号和基本微分法则.1686年, 莱布尼茨发表了第一篇积分学的文献.他是1历史上最伟大的符号学者之一, 他所创设的微积分符号, 远远优于牛顿的符号, 这对微积分的发展有极大的影响.现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的.2 导数的定义的相关定义很多人知道,对于很多问题,采用用高等数学的方法和初等数学的方法都可以解答, 但是高等数学的方法相对于初等数学的方法可以使一些概念更准确, 对某些问题的理解会更深刻, 使一些证明更严谨或更简单, 并为许多问题提供的解题途径. 我们高中对导数的学习只是出略的, 更多相关的知识要高等数学中才会学习, 但我们应该明白高中出现的函数几乎都是可导函数.但我们还是要注重有关概念的辨析, 避免应用导数解决相关问题是出现错误.为了更清楚地了解导数的定义我们应用高等数学中导数的定义方式.2.1 函数连续的定义定义1 若函数在的附近包括点本身有定义, 并且xxfx()00. 则称在连续, 或称点是 f (x)的连续点. xxfx()limfxfx,,,,,000xx,02.2 导数的定义定义2 设函数y=在点的某个邻域内有定义, 若极限 xfx()0fxfx,,,,,,y0 limlim,xxx,,,00xxx,,0存在, 则称函数在x处可导, 并称该极限为函数 y =在点x处的导数,fx()fx() 00,记作. ,,fx注:(1) 函数应在点x的附近有定义, 否则导数不存在. 0x(2) 在定义导数的极限式中, 趋近于0可正、可负、但不为0, 可能为0. ,y,x,y(3) 是函数y=f (x) 对自变量x在,x范围内的平均变化率, 它的几何意义是,x过曲线上点(x, 及点(x+, 的割线斜率. y,f(x)f(x)f(x,,x),x00000fxxfx,,,,,,,00,x(4) 导数lim是函数y,f(x)在点的处瞬时变化率, fx,,,00,,x0,xx它反映的函数y,f(x)在点处变化的快慢程度, 它的几何意义是曲线y,f(x)0 上点(x, )处的切线的斜率. f(x)002fxxfx()(),,,00(5) 若极限不存在, 则称函数y=f (x)在点处不可导.xlim0,,x0,x(6) 如果函数y=f (x)在开区间(a, b)内每一点都有导数, 则称函数在开区y,f(x),间内可导;此时对于每一个, 都对应着一个确定的导数, 从,,,(a,b)(a,b)xfx,而构成了一个新的函数, 称这个函数. ,,fx3 导数在函数问题中的应用3.1 利用导数作函数的图像中学数学教材中介绍的描点法作函数图像, 作图比较粗糙不准确, 一般只适用于简单的函数, 但对比较复杂的函数就很难做出.现用导数的知识来作函数图像就相当的简便.作函数图像的一般步骤:(1) 求出函数的定义域;(2)考察函数的奇偶性、周期性;(3)求函数的一些特殊点, 如与两坐标轴的交点等(列表);(4)确定函数的单调区间, 极值点, 凸性区间及拐点(列表); (5)考察渐进线;(6)画图.32例1 作函数的图像. y,x,6x,15x,20解:(1) 函数的定义域 (,,,,,)51055105,,,(2) 曲线与x, y轴交点分别为.(,0),(1,0),(,0),(0,20),,,222,(3) 令解得 x,,5,1y,3x,12x,15,3(x,5)(x,1),0,,令解得 y,6x,12,6(x,2),0x,,2(4) 现列表讨论函数的单调区间、极值点、凸性区间及拐点:x (,,,,5)(,5,,2)(,2,1)(1,,,)-5 -2 1, y+ 0 ——— 0 +,,y ——— 0 + + +y ?凹 80 极大 ?凸 26 拐点 ?凹 -28极小 ?凹(5) 无渐进线3(6) 作图:X(-5,80)(-2,26)(-1,0)Y(1,-28)图1 3.2 利用导数求参数的值在一些含位置参数的题中, 有我们通过运用导数之似乎可以化简函数, 从而更快速的求出参数.2xa,例 2 已知函数在区间[-1, 1]上是增函数, 求实数的取值afxxR(),,,,2x,2所组成的集合A.224,2ax,2x,2(x,ax,2),f(x),,解 2222(x,2)(x,2)又在[-1, 1]上是增函数 fx()2, ,,f(x),0对恒成立, 即对,,恒成立. x,,1,1x,,1,1x,ax,2,02 设, 那么问题就等价于 ,(x),x,ax,21,a,2,0,(1),0,,,, 即故 ,1,a,1(,1),0,,1,a,2,0,所以 A=aa|11,,,. ,,43.3 判断函数的单调性函数的单调性是函数最基本的性质之一, 是研究函数所要掌握的最基本的知识.通常用定义来判断, 但当函数表达式较复杂时判断正负较困f(x),f(x)12 ,,难.运用导数知识来讨论函数单调性时, 只需求出, 再考虑的正负即可.f(x)f(x)此方法简单快捷而且适用面广.32例 3 已知是定义在R上的函数, 其图像交轴于f(x),x,bx,cx,dx三点, 点的坐标为(2,0),且在[-1,0]和[0,2]有相反的单调性. Bf(x)A、B、C(1)求的值. C(2)若函数)在[0,2]和[4,5]也有相反的单调性, 的图像上是否存在f(x)f(x)一点, 使得在点的切线斜率为? 若存在, 求出点的坐标. 若不MMMf(x)3b 存在, 说明理由.2,解分析:(1), ?在[-1,0]和[0,2]有相反的单调性. ,,f(x)fx,3x,2bx,c,? =0是的一个极值点, 故. ?=0 ,,,,fxf0,0xc22, (2)得,, ,,fx,0x,0x,,b3x,2bx,0123因为在[0,2]和[4,5] 有相反的单调性, f(x),?,,在[0,2]和[4,5] 有相反的符号. fx2 故,. 2,,b,4,6,b,,33, 假设存在点M使得在点M的切线斜率为,则. f(x)(x,y)fxb()3,3b00022,,,即.,而. 3x,2bx,3b,0fx,3b?,,4b,4,3,(,3b),4b(b,9)000?,, 0.故不存在点M使得在点M的切线斜率为. f(x)(x,y)3b003.4 研究方程的根我们知道在解决一元二次方程根的时候通常会用到伟大定理, 但有很多关于方程根的问题如果仅仅用伟大定理来解决的话会显得很吃力, 并且找不着下手的方向.此时我们可以尝试用导数的方法来解决有关问题.532例4 若, 则方程在上有多少根, 0,2m,3x,mxx,1,0,,32解设, 则,,fx,x,mx,12, ,,fx,3x,2mx,且时, , 当,,,,x,0,2fx,0m,3故在上单调递减, 而在与处都连续, 且, f(x)0,2f(x)f(0)10,,x,0x,2,,fm(2)940,,,在上只有一个根. 故 f(x)0,2,,导数有一个很好的作用就是降次, 我们可以三次函数降为更为熟悉的二次函数, 从而达到化简的目的.3.5 求函数极值或最值最值问题是高中数学的一个重点, 也是一个难点.它涉及到了高中数学知识的各个方面, 要解决这类问题往往需要各种技能, 并且需要选择合理的解题途径.用导数解决这类问题可以使解题过程简化, 步骤清晰, 学生也好掌握.应注意函数的极值与最值的区别与联系, 极值是一个局部性概念, 最值是某个区间的整体性概念.利用导数求函数极(最)值解答这类问题的方法是:(1)根据求导法则对函数求出导数.(2)令导数等于0,解出导函数的零点.(3)分区间讨论,得数的单调区间.(4)判断极值点,求出极值.(5)求出区间端点值与极值进行比较,求出最值.出函322例 5 设是函数,,的两个极值点. x、xf(x),ax,bx,axa,012(1)若=-1,=2,求函数的解析式; xf(x)x12x (2)若+=22,求)的最大值; xf(x)21322?解分析: (1) ,,, f(x),ax,bx,axa,022,,,,,?fx,3ax,2bx,aa,02,,?依题意有,,, ,,, f,1,0f2,03a,2b,a,02 12a,4b,a,0解得 a,6622 ,. ?f(x),6x,9x,36xb,,9'22 (2), ?f(x),3ax,2bx,a(a,0)' 依题意, 是方程的两个根,且+=22, xxx、xf(x),021122 . ?(x,x),2xx,x,x,812121223322 ,. ?(,2b3a),(,a),2a,8?b,3a(6,a)2 . ?b,0,?0,a,622, 设),则. ,,p(a),3a(6,a)pa,,9a,36a,, 由得,由得. ,,,,pa,0pa,00,a,4a,4即:函数在区间(0,4]上是增函数,在区间[4,6]上是减函数, p(a)?当=4时, 有极大值为96,?)在(0,6]上的最大值是96, p(a)p(a)a?的最大值为46. b从以上例题的分析可以看出导数定义在求极限导数导数可以解决函数中的最值问题,不等式问题,发挥着重要作用,因此我们应予高度重视,充分理解导数定义概念的实质,把握导数.应用的场合及关键点,只有这样在各类考试中方能得心应手.32例6 (2005年山东卷)已知函数是函数的一个fxmxmxnx()3(1)1,,,,,x,1 极值点, 其中, . mnR,,m,0(1)求与的关系表达式; mn(2)求的单调区间; fx()(3)当时, 函数的图像上任意一点的切线斜率恒大于, x,,[1,1]yfx,()3m求的取值范围. m分析:这类题目解决的关键在于深刻理解并灵活运用导数的知识, 第1小题根据极值点处导数为零, 可确定与的关系;第2小题求函数的单调区间可根mn 据求导法得到, 列出表格, 答案一目了然;第3小题根据导数的几何意义结合一元二次函数的性质即可得到结论.2,解 (1) fxmxmxmn()36(1)3,,,,,, 由是的一个极值点, 知, 即, fx()f(1)0,36(1)0mmn,,,,x,1?,,nm36722,(2) 由(1), 得 fxmxmxm()36(1)35,,,,,,,,,3(1)[(1)]mxxm2, 由知, , 当变化时, 与的变化如下: fx()fx()xm,011,,xmx2221 (1,),, (1,1),1,(,1),,,mmm,0,0,00 0 gx'()递减极小值递增极大值递减 gx()22由上可知, 在区间和上递减,在区间上递增. fx()(1,),,(1,1),(,1),,,mm2,(3) 由已知得,即,即当时,有fxm()3,mxm,,,,2(1)20,,,11x122.? xx,,,,2(1)0mm122 设,其函数开口向上,由题意?式恒成立,所以gxxx()2(1),,,,mm22,g(1)0,,,120,,,,,4,即解之得, ,又,,mmm,g(1)0,3,,,,10,44,所以.即的取值范围为. mm,0(,0),,,,m0334 导数在证明等式和不等式问题中的应用4.1导数在不等式证明中的应用利用导数证明不等式, 就是利用不等式与函数之间的联系, 将不等式的部分或者全部投射到函数上.直接或等价变形后, 结合不等式的结构特征, 构造相应的函数.通过导数运算判断出函数的单调性或利用导数运算来求出函数的最值, 将不等式的证明转化为函数问题.即转化为比较函数值的大小, 或者函数值在给定的区间上恒成立等.x例 7 求证: exx,,,1(0)分析:本题通过导数与函数单调性的关系, 自然地将导数与不等式结合在一x起, 灵活考查了学生全面分析解决问题的能力.先构造函数;再对fxex()1,,, 进行求导, 得到;然后观察得到当时, fx'()0,, 即在fx()fx'()fx()x,0x,08x时是增函数;最后可得当时, , 即. fxf()(0)0,,x,0ex,,1x解:令则 fxex()1,,,x fxe'()10,,,在上是增函数. ?fx()(0,),,当时, ?fxf()(0)0,,x,0x即. exx,,,1(0)4.2 在恒等式证明方面的应用此类问题证明的关键是把恒等式问题转化为函数问题, 然后利用函数的导数达到解决问题的目的.,例 8 求证: arctanarccotxx,,2证明:设则 arctanx,arccotx,f(x)11, f(x),,,0221,x1,x从而令得 f(x),c(c为常数)x,1,,,(), 于是 fx,,,442,arctancot x,arcx,25 导数在数列问题中的应用数列是高中数学中一个重要的部分, 也是个难点.事实上数列可看作是自变量为正整数的特殊的函数, 所以可以利用数列和函数的关系, 运用导数来解决数列的有关问题.2*例 9 已知数列,,的通项, 求数列,,的最大项. a,,aa,n(10,n)n,,nnn 22,解作辅助函数, 则. f(x),x(10,x)(x,0)f(x),20x,3x20, 令f(x),0 得0,x,; 320,x, 令f(x),0 得或. x,0392020在区间上是增函数, 在区间是减函数. f(x)(0,)(,,,)3320因此, 当x,时函数取到最大值. f(x)3*2对, , f(n),n(10,n)n,,f(7),147,f(6),144f(n),147max所以数列的最大项为. ,,aa,147n76 导数在解析几何问题中的应用导数进入中学数学, 丰富了中学数学知识和解法, 给许多繁难问题提供了一种通用的解题方法, 也给许多常规问题的解法提供了新的视角.利用导数解决解析几何中的切线、中点弦问题, 正是其中一个方面.6.1 利用导数求解切线方程利用导数的几何意义, 把二次曲线方程看作:y是x的函数, 利用复合函数222求导法则, 可轻松求出切线的斜率.如对圆xaxbR,,,,, 两边对求导, x,,,,,则有,,,,, 所以在切点处的切线斜率mn,2x,a,2y,by,0,,xm,a2,k,y,,.从而求出切线方程是.xamaybnbR,,,,,,|,,,,,,,,xx,m,y,nn,b类似地可轻松求出过椭圆、双曲线、抛物线等曲线上的点的切线方程. 如果以圆、椭圆等图形的中心为中心, 按比例缩小图形, 则一定存在同类的圆、椭圆等与弦AB中点M相切(如图1).此时缩小的曲线方程如22xy222xaxbtR,,,,, , 两边对求导, 可发现并不改变原程,,1x,,,,,,22tatb,,,,,求导的结果.因此, 利用导数法求中点弦的斜率, 就是y在中点处的值. xB A M图2106.2 求中点弦方程22例 10 已知双曲线方程, (1)求以为中点的双曲线的弦所在的,,22xy,,A2,1直线方程;(2)过点, 能否作直线, 使与所给双曲线交于两点, 且LL,,P、QB1,1点是弦的中点,这样的直线如果存在, 求出它的方程;如果不存在, 说明BPQ理由.22,解对两边求导, 得 4x,2yy,022xy,,x,(1) 以为中点的弦的斜率, 所以所求中点弦所在直线方程,,k,y|,2A2,1xx,2,y,1为 yx,,,12(1),(2) 以为中点的弦的斜率, 所以所求中点弦所在直线方程,,k,y|,2B1,1xx,2,y,122为, 即,但与双曲线方程联立消去得yx,,,12(1)210xy,,,y22xy,,2, 无实根.因此直线与双曲线无交点, 所以满足条件的2430,80xx,,,,,,,l直线不存在. l 点评:(1)求出的方程只是满足了必要性, 还必须验证其充分性, 即所求直线与双曲线确实有两个交点.6.3 证明与中点弦有关的不等式22xy例11 已知椭圆, A、B是椭圆上两点, 线段的垂直平,,AB,,1a,b,022ab2222abab,,分线与轴交于点P, 求证:x. (x,0)x,,,00aa P证明: 设AB的中点是, 则中点在椭圆内, ,,Pm,n所以 (1)22xy对椭圆两边求导,,122ab2xb2x2y,,有, 得 y,y,0,,xx222yaab2mb,故中点弦AB的斜率, 所以线段AB的垂直平分线斜率满k,y|,,xx,my,n.2na22xan,ona0足:, 得m,. ,222a,bm,xmb02222abab,,x代入(1)式得. ,,,0aa6.4 求与中点弦有关的轨迹问题122AA例 12 已知定点(0, 2), 椭圆, 过任意引直线与椭圆交于两点x,y,12 , 求线段中点的轨迹方程. P、QPQ解设线段的中点为. PQ,,Mx,y122对椭圆两边求导, 得 x,y,12,=0 x,2yyx11x所以PQ的斜率为.又, k,,k,kAMPQ2yy,2x,,所以. x,12y12222化简即得(在椭圆内的部分). x,2y,4y,0x,y,12综上所述, 在中学数学中解决函数、解析几何时我们可以充分考虑导数这一个有力工具, 有些题通过导数的使用可以达到简化题目、降低难度的作用, 但在应用导数时不能盲目使用.相信有了导数这一工具会使大家解决中学数学题时多以选择.参考文献[1]郭金芝. 导数的应用[J]. 中学生数理化(教与学教研版), 2006(2):38-40 .[2]王淑茂吴永清. 例谈导数应用中的几个误区[J]. 数学教学研究,2006(1):35-36.[3]陈应昌. 导数中的一个重要定理的应用[J] . 高中数学教与学 ,2006(2):27-28.[4]肖志向. 例说导数法证明不等式[J]. 中学数学研究, 2006(2):38-39.[5] 李汉云. 导数的基本应用举例[J]. 高中数学教与学. 2005(10):15-17[6] 华东师范大学数学系 . 数学分析[M](上册, 第三版).北京: 高等教育出版社, 2001-6:87-103.[7]秦学锋. 微积分在数列求和中的应用[J] .数学通报, 2001(2):36 [8]周国球 .运用导数解题应注意几个方面[J].中学数学教学, 2006(1):24-25.[9] 华东师范大学数学系(数学分析(上册)[M](北京:高等教育出版社,2001([10] 杜忠芬.浅谈微积分在初等数学中的应用[J],同仁学院学报,2007, 1(6): 40-43.[11] 杜明华.新增内容导数在解题中的几点应用[J], 新课程改革与实践,2009, 4(5):85-86.[12] 张丽娟.导数的应用浅析[J], 自然科学, 2009,26(3):44-48. [13] 周晓渝.高等数学在初等数学中的应用[J], 科技信息, 2009, 30: 499-499.[14] 窦宝泉.导数在中学数学中的应用[J].数学通讯, 2003(12):12-13 [15]张红. 数学简史[M].科学出版社.2006(6):190-203.12。
高中数学中的导数应用导数是高中数学中的一个重要概念,它在数学和实际生活中有着广泛的应用。
本文将介绍一些高中数学中导数的应用,并探讨这些应用在实际问题中的意义。
1. 方程求解导数在方程求解中起着重要的作用。
考虑一个函数f(x),我们可以通过求解f'(x)=0来找到函数f(x)的极值点。
这个应用在优化问题、最值问题等方面有着广泛的应用。
通过求解导数为零的方程,我们可以找到函数的极大值或者极小值点,从而解决一些实际问题。
2. 函数图像分析导数对于函数图像的分析也是非常关键的。
我们可以通过导数的正负性来判断函数的增减性和凹凸性。
例如,当导数大于零时,函数是递增的;当导数小于零时,函数是递减的。
此外,我们还可以通过导数的凹凸性来确定函数的拐点和临界点。
3. 速度和加速度导数在物理学中也有着重要的应用,特别是在描述物体的速度和加速度方面。
考虑一个物体的位移函数s(t),通过对位移函数关于时间的导数,我们可以得到物体的速度函数v(t)。
进一步地,通过对速度函数关于时间的导数,我们可以得到物体的加速度函数a(t)。
这些函数可以帮助我们分析物体在运动过程中的行为。
4. 经济学中的边际量在经济学中,导数被广泛应用于边际分析。
考虑一个经济学模型中的变量y与变量x的关系,我们可以通过求解dy/dx来计算y相对于x 的边际变化率。
这些边际变化率可以提供给决策者重要的信息,帮助他们做出合理的经济决策。
总结起来,导数在高中数学中有着重要的应用。
它在方程求解、函数图像分析、物理学和经济学等领域扮演着重要的角色。
通过运用导数的概念和方法,我们可以解决各种实际问题,并推动科学的进步。
需要注意的是,导数的应用不仅仅局限于上述列举的几个方面。
在数学和实际生活中,还有许多其他领域利用了导数的概念和方法。
因此,了解和掌握导数的应用是高中数学学习中的重要内容之一。
经过以上的讨论,我们可以看到导数在高中数学中具有广泛而重要的应用。
通过深入理解导数的概念和性质,并将其应用于实际问题的分析和解决中,我们可以提高数学思维和问题解决能力。
导数在高中数学函数中的应用体会
作为一个AI,我无法体验和感受,但我可以通过统计数据和常见的实际例子来说明导数在高中数学函数中的应用。
1. 反应函数变化速率
导数可以用来反应函数在某一个点上的变化速率,即函数在该点处的斜率。
通过求导,我们可以得到函数的变化速率,进而用于解决实际问题,比如求切线的斜率、求最速降线等等。
2. 解决最值问题
导数可以用于解决函数取值的最大值和最小值问题。
具体的方法是,对函数求导,求得导函数的零点,即为函数的极值点,然后通过比较极值点和函数在区间端点的值,找到函数的最大值和最小值。
3. 求曲线长度和面积
导数可以用于求曲线长度和曲面积。
具体的方法是,将曲线或曲面分割成无数个极小的线段或面元,然后对这些线段或面元的长度或面积进行求和,最终得到曲线或曲面的长度或面积。
通过上述应用,我们可以看到,导数不仅是高中数学函数的重要概念,更是在实际生活中具有广泛的应用价值。
高中数学导数概念教案的难点及解决方法探析一、难点分析1.导数定义的理解导数是微积分中一个重要的概念,它是描述函数变化率的工具。
但是,学生在初接触这个概念时,往往会感到很抽象。
他们难以理解“极限”、“变化率”、“瞬时速度”概念,导致他们对导数的定义难以准确地掌握。
2.导数基本性质的掌握导数的基本性质是学习导数过程中的另一个难点。
但是,如果学生没有充分掌握这些性质,那么就很难理解后续的推导和应用。
有时候,一些学生会生硬地背诵这些性质,但是背诵并不能帮助他们真正地理解和运用这些性质。
3.导数计算的复杂性导数的计算是学生在学习导数过程中遇到的另一个难点。
虽然这一部分内容看似只是一些简单的公式和套路,但是如果学生没有充分的练习和掌握,他们就无法熟练地应用导数计算方法。
二、解决方法1.强化基础知识的学习为了帮助学生理解导数概念,教师应该从基础知识开始,详细讲解极限的定义和计算方法,帮助学生全面认识极限的概念。
在讲解极限的基础上,再引入导数的概念,并帮助学生理解导数的真正含义,例如变化率、瞬时速度等。
这样学生就可以更好地掌握导数的定义。
2.运用图像帮助学生理解教师可以通过绘制函数的图像,帮助学生更好地理解导数的概念以及导数的基本性质,例如导数的正负性和导函数的单调性等。
这样学生就可以更加直观地感受到导数的作用。
3.提供练习并予以及时反馈为了帮助学生更好地掌握导数计算的方法,教师应当为学生提供大量的练习,帮助他们通过反复练习来加深印象,并及时给予反馈,帮助他们发现并纠正错误。
4.运用案例帮助学生理解教师可以运用一些实际问题来帮助学生更好地理解导数的应用。
例如,通过求出速度的导数来计算某个时刻小车的加速度。
这样不仅可以让学生理解导数的应用,同时也可以增加学生的兴趣,提高学习效果。
学习导数是数学学习中的一个重要环节。
教师应该针对导数学习的难点,采取有效的教学策略,帮助学生更好地掌握导数的相关知识。
135神州教育导数知识在高中数学中的重要作用魏中慧山东省莱芜第一中学57级三级部六班摘要:导数知识是高中数学内容中非常重要的一部分,它的课是安排也是相对比较多的,这主要是因为导数知识在高中数学学习中发挥着非常重要的作用,一方面可以培养学生们的思维和学习能力,另一方面也可以实质性的帮助我们解决很多数学题型,本文中我们就将针对导数知识在高中数学中的重要作用进行深入探讨研究,希望大家可以了解导数知识的重要性,更加努力的去学习这部分内容。
关键词:导数;高中数学;作用导数知识对于高中数学学习能力以及解题能力的培养都有非常重要的作用,但是很多人对此仍然不太了解,接下来我们就来具体探讨了解一下导数知识的重要性以及导数知识在高中数学解题中的应用。
一.导数知识的重要性导数知识是我国高中课程设置中非常必要的一部分内容,这部分内容的教学对于学生数学思维的养成、逻辑思维能力的发展甚至其他科目的学习都是非常有利的。
接下几次我们就来具体了解一下。
(一)有利于学生高数思维的掌握首先数学学习过程中思维方法对于提升数学的学习效率和质量是非常关键的,而函数思维就是数学教学中非常重要的一点。
在高中数学解题过程中我们就会发展传统的初步数学已经不能帮助我们解决一些问题了,而建立函数,再进行求导,应用导数我们就可以顺利的解决很多问题。
因而在导数的不断学习过程中学生也会逐渐形成一种高数思维即函数思维。
(二)有利于学生各科知识的综合学习高中很多科目之间的共同性是非常强的,其中数学、物理、化学等理学类课程的相通行就是非常强的,所以在物理、化学课程学习过程中我们在解题过程中也会需要应用应用一些数学知识,其中导数的应用就是非常多的。
比如在物理学习过程中我们已知匀加速直线运动的函数关系,我们就可以通过求导来得出加速度,这样物理计算就会相对比较简单。
当然化学学习中对于反应速度以及冷却速度的求解也可以应用导数。
(三)有利于培养学生的逻辑思维能力逻辑思维能力的培养是数学课程教学过程中非常重要的一个目标,而导数知识的学习对于学生这方面能力的培养就是非常有效的。
高中数学中的导数应用案例全面解析与计算导数是高中数学中的一个重要概念,在不同的数学问题中都有广泛的应用。
本文将通过一些具体案例,全面解析和计算导数的应用,以帮助读者更好地理解和应用导数。
案例一:汽车行驶问题假设一辆汽车以恒定的速度行驶,车速为v(t)(单位:m/s)。
我们需要求出汽车行驶过程中的加速度a(t)。
根据导数的定义,加速度a(t)可以表示为车速v(t)对时间t的导数,即a(t) = dv(t)/dt。
由此,我们可以通过求车速对时间的导数得到加速度。
在具体计算中,我们可以用一个具体的函数来描述车速v(t)的变化规律。
例如,假设车速v(t) = 2t + 3,其中t为时间(单位:s)。
根据导数的计算规则,这个函数的导数即为加速度。
对v(t)进行求导,有:dv(t)/dt = d(2t + 3)/dt = 2因此,这辆汽车的加速度恒定为2 m/s²。
案例二:曲线的切线问题假设有一条曲线y = f(x),我们需要求出该曲线在某一点P(x0, y0)处的切线斜率k。
根据导数的定义,斜率k可以表示为曲线y = f(x)在点P处的斜率,即k = dy/dx |x=x0。
其中,dy/dx表示y对x的导数,"|"表示在x=x0的意思。
在实际计算中,我们首先需要确定曲线函数f(x)的具体形式,以及点P(x0, y0)的坐标。
然后,对曲线函数进行求导,并将x的值代入导函数,即可得到切线斜率k的值。
以一个具体的例子来说明。
假设曲线为y = x²,要求在点P(2, 4)处的切线斜率k。
首先,对曲线函数y = x²进行求导,得到导函数dy/dx = 2x。
然后,将点P(2, 4)中的x坐标代入导函数2x,即可得到切线斜率:k = dy/dx |x=2 = 2(2) = 4所以,在曲线y = x²的点P(2, 4)处,切线的斜率为4。
通过以上两个案例,我们可以看到导数在不同数学问题中的应用。
导数在高中数学中的应用探讨
摘要:导数是数学发展史中一项重要的发明,在几何之后一个具有跨时代意义的伟大研究,也被称为数学史中的里程碑。
本文主要分析高中数学中导数的应用,阐述根据导数知识对高中数学问题研究的方法。
关键词:导数高中数学应用
高中数学的应用及其广泛,导数也从以往辅助地位提升到分析和解决问题中不可缺少的功能。
导数是高中数学中的重点内容,也是对函数性质的总结与扩展,并且导数运用可以解决生活中常见的很多问题。
导数在高考当中逐渐成为热点,根据导数解决实际问题,主要可以培养学生建模、总结、反思等能力。
以下针对导数在高中数学中的应用进行探讨[1]。
一、导数的含义
1.导数的基本概念
导数是微积分中的重要基础概念,也是函数的局部性质,当一个函数在某一点的导数描述了这个函数在这一点的变化率,如果函数的自变量和取值都是实数,那么函数在某一点的导数就是该函数所代表曲线
在这一点上地切线斜率。
导数的本质就是通过基础概念对函数进行局部线性逼近。
但是,不是所有的函数都有导数,一个函数中也不一定所有的点都有导数,假如某一个函数在某一点中有导数存在,可称其为这一点可导,否则称为不可导。
可导的函数一定是连续的,不连续的函数一定不可导。
微积分基本定理表明求原函数与积分是等比的,求导和积分是一对互逆的状态,都是微积分学当中最基础的概念。
2.导数与函数的性质
导数与函数的性质可分为单调性和凹凸性,若导数大于零,则单调递增;若导数小于零,则单调递减;导数与零相同则为函数驻点,不一定为极值点,需带入驻点左右两边的数值求导数正负判断是否具有单调性[2]。
若已知函数为递增函数,那么导数大于等于零,如果已知函数为递减函数,导数则小于等于零。
当变化时函数的切线变化,函数的导数值就是切线斜率;可导函数的凹凸性与导数的单调性相关,当函?档牡己?数在某一个区间上单调递增,这个函数区间是向下凹,反之为向上凸。
当二阶导函数存在时,可用正负性进行判断,在某一区间大于零,这个区间的函数是向下凹,反之区间函数向上凸,曲线的凹凸分界点称作为曲线的拐点。
二、导数的计算与求导法则
复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,也可以成为链式法则,变限积分的求导法则为:
a(x),b(x)为子函数。
在高中数学当中应用导数,不仅可以提高学生的思维开拓,还能促进学生扩展创新的能力,导数的计算就是,计算已知函数的导函数,可以根据导数的定义运用变化值的极限进行计算,在实际学习计算过程中,很多常见的解析函数都可以当做简单函数的和、差、积或者相互复合的结果,只有对简单函数的导函数进行整体掌握,才能根据导数求导法则推算复杂函数的导函数[3]。
导数的求导法则是由基本函数的和、差、积或者相互复合构成函数的导函数,通过函数的求导法则来对导数的求导法则进行推导,基本法则主要分为四种方式:一是求导的线性。
函数的线性组合求导,相当于对其中各个部分求导后在进行线性组合;二是两个函数乘积的导函数。
一导乘二+一乘二导;三是两个函数商的导函数是一个分式。
子导乘母-子乘母导,除以母平方;四是当有复合函数时,用链式法则进行求解。
三、导数在高中数学中的具体应用
1.导数在不等式证明问题中的应用
在高中数学学习过程当中,不等式证明是高中数学中的一个难点,也是综合性较强的一个知识点,对学生的思维能力要求很高,很多数学问题采用常规方法难以得到证明结果,就需要根据高中数学,新增内容导数进行解决问题[4]。
在教学中运用导数概念,对不等式进行问题解析,能够引导学生更快的完成问题内容,将不等式与函数进行相互结合,利用导数的相关内容,可以快速解决问题。
比如设函数:
2
2
'
当时,'当时,'所以在(0,1)上递增(1,+∞)上递减,而g(1)=0,所以时,即。
因此,采用导数对不等式进行证明,需要创造新的函数,根据新函数的最值解决不等式证明问题。
2.导数在求解函数极值、最值中的应用
采用函数对极值进行求解,主要包含四种内容,一是根据导数的概念,求解出导数的数值;二是确定函数的定义,分析出函数的值处在什么范围;三是参照导数公式',对导数的全部实根进行求解;四是观察'根的状况,比如根的两侧符号出现变化,左正右负,
则说明的根是极大值,反之左负右正,的根是极小值,可根据这两种状态进行判断。
3.根据导数意义确立函数解析式
在函数当中求解函数解析式,可以对函数的性质进行更好的研究,在函数的应用当中,函数性质的研究对函数解析可以起到更好的作用[5]。
比如,已知函数原状态是32,此函数坐标图像在轴具有交点,称A,根据图像画图可以掌握,该函数在A点交点的切线方程是。
已知的点在时可以获取极值,根据已知的条件,列出函数相对应的解析式。
解题:根据题目中已知的条件,可以了解到函数
32当中轴相交的点为A,因此A点的坐标可以得出(0,),曲线A点的切线方程在题目中提到为。
A 点满足函数条件,可得,切线斜率为,那么在中的导数可以求出’lx=0=15,根据函数原型进行求解,可以得出’2’lx=0=c,根据这两个公式可以对函数参数C 进行求解为c=15,如题中已知条件,函数在时可以求出0为极值,根据上诉分析,可列出方程组进行求解:方程组解出的数值为,,
将,,c=15带入进原函数内
函数解析式可以求出3b2+。
结语
导数在高中数学当中的应用,是高中数学最有力的工具,不仅能够提高学生解决问题的能力,还能体现数学中的中心思想,对于实际问题的解决办法,导数提供了有效的作用。
导数在理解教学过程当中具有一定的难度,教师应当在教学过程当中,将实例与导数相互结合,充分进行问题解析,不断对导数在高中数学的应用进行研究探讨,只有这样才能够使学生更深刻掌握导数概念,为以后的深入数学学习奠定坚实基础,
参考文献
[1]邓晗阳.导数在高中数学解题中的应用探讨[J].科学大众(科学教育),2016(12):27.
[2]程慧.导数知识在高中数学学习中的应用探讨[J].速读(上旬),2017(9):141.
[3]刘金球.高中数学例题解答中导数的应用探讨[J].中学生数理化(学研版),2016(2):33-34.
[4]周海锋.高中数学导数教学的再思考[J].教师,2015(32):43.
[5]马僖泽.关于高中数学导数教学有效性探微[J].新教育时代电子杂志(教师版),2016(38):97.。