山东省日照市2018届高三第三次模拟考试文综试题 理科数学答案
- 格式:doc
- 大小:3.81 MB
- 文档页数:12
2018级高三第三次阶段复习质量达标检测数学(文科)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第I 卷(选择题)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则A.()01,B.(]02,C.()1,2D.(]12, 2 .如果0a b <<,那么下列不等式成立的是 A .11ab<B .2ab b <C .2ab a -<-D .11ab-<-3 .在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨ 4.已知函数()f x 的定义域为()1,0-,则函数()2+1f x 的定义域为A .()1,1-B .11,2⎛⎫- ⎪⎝⎭C .(1,0)-D .1,12⎛⎫⎪⎝⎭5 .已知y x ,为正实数,则A.y x y x lg lg lg lg 222+=+B.y x y x lg lg )lg(222∙=+C.y x y x lg lg lg lg 222+=∙D.y x xy lg lg )lg(222∙= 6.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是A .2,3π- B .2,6π- C .4,6π- D .4,3π7 .函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --8.已知 a b c ∈R 、、,“240b ac -<”是“函数2()f x ax bx c =++的图象恒在x 轴上方”的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件9.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = A.3 B.4 C.5 D.610 .已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)x k f x x k =--=,则A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值第II 卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分. 11.不等式220x x +-<的解集为___________.12.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.13 .记不等式组0,34,3 4.x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D,若直线()1y a x =+与D 有公共点,则a 的取值范围是______.14.已知向量AB与AC的夹角为120°,且3AB = ,2AC = ,若AP AB AC λ=+ ,且AP BC ⊥,则实数λ的值为__________.15.设函数(),0,0.x x x f x a b c c a c b =+->>>>其中若,,a b c ABC ∆是的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,x x x x R a b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设向量)(),sin ,cos ,sinx ,0,.2x x x x π⎡⎤==∈⎢⎥⎣⎦a b(I)若,x =求a b 的值; (II)设函数()(),.f x f x = 求的最大值a b 17.(本小题满分12分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(I)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(Ⅱ)要使生产900千克该产品获得的利润最大,则甲厂应该选取何种生产速度?并求最大利润. 18.(本小题满分12分)△ABC 内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值. 19.(本小题满分12分)设()()256ln f x a x x =-+,其中a ∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(I)求a 的值; (Ⅱ)求函数()f x 的单调区间与极值. 20.(本小题满分13分)设数列{}n a 为等差数列,且355,9a a ==;数列{}n b 的前n 项和为,2n n n S S b +=且.(I )求数列{}n a ,{}n b 的通项公式;(II )若()n n n na c n N Tb +=∈,为数列{}nc 的前n 项和,求n T .21.(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .日照一中高三第三次调研考试 数 学 试 题(理科)参考答案一、选择题:DBACD BADCC二、填空题:11.3212.(,+∞) 13.55 14.﹣4<m <2 15.①③④ 三、解答题:16.解:(Ⅰ)依题意可得⎩⎪⎨⎪⎧4+1=5a 4×1=b ,即⎩⎪⎨⎪⎧a =1b =4 5分(Ⅱ)由(Ⅰ)知f (x )=1x +41-x∵0<x <1,∴0<1-x <1, 1x >0,41-x>0,∴1x +41-x =(1x +41-x )[x +(1-x )]1451x x x x-=++-≥9 当且仅当141x x x x-=-,即x =13时,等号成立. ∴f (x )的最小值为9. .............. 12分 注:其它解法酌情给分.17.解 (I)设等比数列{a n }的首项为a 1,公比为q , 依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28, 得a 3=8,∴a 2+a 4=20∴311231208a q a q a a q ⎧+=⎪⎨==⎪⎩解之得12q a =⎧⎨=⎩或11232q a ⎧=⎪⎨⎪=⎩ 又{a n }单调递增,∴q=2,a 1=2, ∴n n a 2=.………………6分 (II)122log 22n n nn b n =∙=-∙,∴23122232...2nn s n -=⨯+⨯+⨯++⨯ ① ∴23412122232...(1)22n n n s n n +-=⨯+⨯+⨯++-⨯+ ②∴①-②得23112(12)222 (22212)n nn n ns n n ++-=++++-∙=-∙-=11222n n n ++-∙- ∴1250,n n s n ++∙>即112250,252n n ++->∴>故使1250,n n s n ++∙>成立的正整数n 的最小值为5 . ……………… 12分18.解:(I)33//,cos sin 0,tan 44a b x x x ∴+=∴=-22222cos 2sin cos 12tan 8cos sin 2sin cos 1tan 5x x x x x x x x x ---===++ ………………6分(II)()2())4f x a b b x π=+⋅=++32由正弦定理得sin ,sin sin 4a b A A A B π===可得所以或43π=A因为a b >,所以4π=A()⎪⎭⎫ ⎝⎛++62cos 4πA x f=)4x π+12-,0,3x π⎡⎤∈⎢⎥⎣⎦ 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦, 所以 ()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f ……………… 12分19.解:(I)由题意知,)210()204(p x p py +--+=, (3)分 将231p x =-+代入化简得:x x y -+-=1416(0x a ≤≤). ………………5分 (II)13)1(14217)114(17=+⨯+-≤+++-=x x x x y , 当且仅当1,114=+=+x x x 即时,上式取等号. ………………8分当1a ≥时,促销费用投入1万元时,厂家的利润最大;………………9分当1a <时,)114(17+++-=x x y 在[]0,a 上单调递增, 所以x a =时,函数有最大值,即促销费用投入a 万元时,厂家的利润最大………………11分综上,当1a ≥时,促销费用投入1万元,厂家的利润最大;当1a <时,促销费用投入a 万元,厂家的利润最大. ………………12分20.解(I)由已知f(1)=S 2=1+12=32,f(2)=S 4-S 1=12+13+14=1312,f(3)=S 6-S 2=13+14+15+16=1920;………………3分(II) 由(1)知f(1)>1,f(2)>1; 下面用数学归纳法证明:当n≥3时,f(n)<1. ………………5分①由(1)知当n =3时,f(n)<1;………………6分②假设n =k(k≥3)时,f(k)<1,即f(k)=1k +1k +1+…+12k<1,那么f(k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=1111k k 1k 22k ⎛⎫+++⋅⋅⋅+ ⎪++⎝⎭+12k +1+12k +2-1k <1+112k 12k ⎛⎫-⎪+⎝⎭+112k 22k ⎛⎫- ⎪+⎝⎭=1+2k -(2k +1)2k(2k +1)+2k -(2k +2)2k(2k +2)=1-12k(2k +1)-1k(2k +2)<1,所以当n =k +1时,f(n)<1也成立.………………11分 由①和②知,当n≥3时,f(n)<1. ………………12分所以当n =1和n =2时,f(n)>1;当n≥3时,f(n)<1. ………………13分21.解(Ⅰ)2(21)1()xax a x af x e-+-+-'=,由条件知(0)1f a '=-, 因为函数()f x 在点(0,(0))f 的切线与直线013=+-y x 平行, 所以31=-a ,2-=a . ………………4分 (Ⅱ)2(21)1()xax a x a f x e-+-+-'=(1)(1)x ax a x e -+--= ①当0a =时,1x =,在(0,1)上,有()0f x '>,函数()f x 是增函数;在)4,1(上,有()0f x '<函数()f x 是减函数,44)4(,0)0(-==e f f 函数()f x 的最小值为0,结论不成立.………………6分②当0a ≠时,1211,1x x a==-(1)若0a <,(0)0f a =<,结论不成立 ………………7分(2)若01a <≤,则110a-≤,在(0,1)上,有()0f x '>,函数()f x 是增函数;在)4,1(上,有()0f x '<,函数()f x 是减函数,只需⎩⎨⎧≥≥--44)4()0(ef e f ,所以14≤≤-a e ………………10分(3)若1a >,则1011a<-<,在)11,0(a-上,有()0f x '<,函数()f x 是减函数;在)1,11a-(,有()0f x '>,函数()f x 是增函数; 在)4,1(上,有()0f x '<,函数()f x 是减函数.函数在11x a =-有极小值,⎭⎬⎫⎩⎨⎧-=)4(),11()(min f a f x f 只需⎪⎩⎪⎨⎧≥≥---44)4()11(ef e af 得到⎪⎩⎪⎨⎧≥+≥---14171213a e a a,因为1,11213<>---a e a ,所以1a >. (13)分综上所述可得4-a. ………………14分≥e。
2017—2018学年度高三第三次调研测试理科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用0.5毫米黑色字迹的签字笔书写,字体工整、 笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。
1. 若集合{|0}B x x =≥,且A B A =,则集合A 可以是A .{1,2}B .{|1}x x ≤C .{1,0,1}-D .R2. 已知复数1z i =+(i 为虚数单位)给出下列命题:①||z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A. 0B. 1C. 2D. 33. 若1sin ,3α=且2παπ<<,则sin 2α=A .B .C .D . 4. 已知等差数列{}n a 的公差不为0,11a =,且248,,a a a 成等比数列,设{}n a 的前n 项和为n S ,则n S =A. (1)2n n +B. 2(1)2n +C. 212n + D. (3)4n n +5. 若1()n x x-的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是A . 462-B . 462C . 792D . 792-6. 执行如图所示的程序框图,输出的S 值为 A.12018B. 12019C. 20172018D. 201820197. 10|1|x dx -=⎰A .12B . 1C . 2D . 38. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是 (0,0,0),(1,0,1),(0,1,1)1,(,1,0)2,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为 A.B.C.D.9. 设曲线()cos (*)f x m xm R =∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为10.平行四边形ABCD 中,2,1,1,AB AD AB AD ===-点M 在边CD 上,则MA MB 的 最大值为A. 2B. 1C. 5D.111. 等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,则当*n N ∈时,1n nS S -的最 大值与最小值的比值为A. 125-B. 107- C. 109D.12512.已知函数13,1()22ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩(ln x 是以e 为底的自然对数, 2.71828e =),若存在实数,()m n m n <,满足()()f m f n =,则n m -的取值范围为 A. 2(0,3)e +B. 2(4,1]e -C. 2[52ln2,1]e --D. [52ln2,4)-二、填空题:本大题共4个小题,每小题5分。
**2017—2018学年度高三年级第三次模拟考试**理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}13,0M x x N x x =-≤<=<,则集合{}03xx ≤<=( )A .MN⋂ B .MN⋃ C.()R MC N⋂ D .()R C M N⋂2.复数z 满足()234i z i --=+(i 为虚数单位),则z=( )A .2i -+B .2i - C. 2i -- D .2i + 3.已知ta n 16πα⎛⎫+= ⎪⎝⎭,则ta n 6πα⎛⎫-= ⎪⎝⎭( )A .2-.2+C. 2--.2-+4.已知命题:p 在A B C ∆中,若sin sin A B=,则A B=;命题():0,q x π∀∈,1sin 2sin x x+>.则下列命题为真命题的是( ) A .pq∧ B .()pq ∨⌝ C.()()p q ⌝∧⌝ D .()p q⌝∨5.已知双曲线()2222:10,0x y Ea b ab-=>>的两条渐近线分别为12,l l ,若E 的一个焦点F 关于1l 的对称点F '在2l 上,则E 的离心率为( )A B .326.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .7 C. 152D .2337.已知函数()()s in 203f x x πωωω⎛⎫=+-> ⎪⎝⎭的图象与x 轴相切,则()f π=( )A .32-B .12-12- D .12--8.已知P 是抛物线24y x=上任意一点,Q 是圆()2241xy-+=上任意一点,则P Q 的最小值为( )A .52B .1D.19.利用随机模拟的方法可以估计圆周率π的值,为此设计如图所示的程序框图,其中()ra n d 表示产生区间[]0,1上的均匀随机数(实数),若输出的结果为786,则由此可估计π的近似值为( )A .3.134B .3.141 C.3.144 D .3.147 10.在A BC ∆中,点G 满足0G A G BG C ++=.若存在点O ,使得16O GB C=,且O Am O B n O C=+,则m n -=( )A .2B .2- C. 1 D .1- 11.若异面直线,m n 所成的角是60︒,则以下三个命题: ①存在直线l ,满足l 与,m n 的夹角都是60︒; ②存在平面α,满足mα⊂,n 与α所成角为60︒;③存在平面,αβ,满足,mn αβ⊂⊂,α与β所成锐二面角为60︒.其中正确命题的个数为( )A .0B .1 C. 2 D .3 12.已知()0,xxxea fx e a>=+,若()f x 的最小值为1-,则a=( )A .21eB .1eC. e D .2e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设变量,x y 满足约束条件10,1,250,x y y x y -+≥⎧⎪≥⎨⎪+-≤⎩则zx y=+的最大值为 .14.某种袋装大米的质量X (单位:k g )服从正态分布()50,0.01N ,任意选一袋这种大米,质量在49.850.1kg的概率为 . 15.设函数()2,0,0,x x f x x ⎧<⎪=≥则使得()()f x fx >-成立的x 得取值范围是 .16.A B C ∆的内角,,A B C 的对边分别为,,a b c ,角A 的内角平分线交B C 于点D ,若111,2a bc=+=,则A D 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 是等差数列,{}n b 是等比数列,111,2a b ==,22337,13a b a b +=+=.(1)求{}n a 和{}n b 的通项公式; (2)若,,n nn a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n S .18. 某球迷为了解,A B 两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:A球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:记事件:C “A 球队的攻击能力等级高于B 球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 19.如图,四棱锥PA B C D-的底面A B C D 是平行四边形,90B A CP A D P C D ∠=∠=∠=︒.(1)求证:平面P A B ⊥平面A B C D ;(2)若3AB AC PA ===,E 为B C 的中点,F 为棱P B 上的点,//P D平面A E F ,求二面角A D F E--的余弦值.20.已知点()2,0A -,点()1,0B -,点()1,0C ,动圆O '与x 轴相切于点A ,过点B 的直线1l 与圆O '相切于点D ,过点C 的直线2l 与圆O '相切于点E (,D E 均不同于点A ),且1l 与2l 交于点P ,设点P 的轨迹为曲线Γ. (1)证明:P B P C+为定值,并求Γ的方程;(2)设直线1l 与Γ的另一个交点为Q ,直线C D 与Γ交于,M N两点,当,,O D C '三点共线时,求四边形M P N Q 的面积. 21.已知0a>,函数()24ln 2a f x x x a=+-+.(1)记()()2g a fa =,求()g a 的最小值;(2)若()yfx =有三个不同的零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知点A 在椭圆22:24Cx y+=上,将射线O A 绕原点O 逆时针旋转2π,所得射线O B 交直线:2l y =于点B .以O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求椭圆C 和直线l 的极坐标方程;(2)证明::R t O A B ∆中,斜边A B 上的高h 为定值,并求该定值. 23.选修4-5:不等式选讲 已知函数()123f x x x =---.(1)求不等式()0f x ≥的解集; (2)设()()()g x fx fx =+-,求()g x 的最大值.试卷答案一、选择题1-5: CADBB 6-10: BBDCD 11、12:DA 二、填空题13. 4 14.0.8185 15.()(),10,1?∞-⋃- 16.2⎫⎪⎪⎣⎭三、解答题 17.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 依题意有,⎩⎨⎧1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2, 故a n =2n -1,b n =2n,(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n, 所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n(1+4n -3)2+4(1-4n)1-4=2n 2-n + 4 3(4n -1).18.解:(1)两队所得分数的茎叶图如下3 6 9 3 15 2 4 0 7 1 9 5 5 10 8 367 7 1 6 78 8 4 5 0 11 4 4 0 7 20 9 2 12 4 0通过茎叶图可以看出,A 球队所得分数的平均值高于B 球队所得分数的平均值; A 球队所得分数比较集中,B 球队所得分数比较分散.(2)记C A1表示事件:“A 球队攻击能力等级为较强”, C A2表示事件:“A 球队攻击能力等级为很强”; C B1表示事件:“B 球队攻击能力等级为较弱”, C B2表示事件:“B 球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C =(C A1C B1)∪(C A2C B2). P (C)=P (C A1C B1)+ P (C A2C B2)=P (C A1)P (C B1)+P (C A2)P (C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1420,320,520,1820,故P (C A1)=1420,P (C A2)=320,P (C B1)=520,P (C B2)=1820,P (C)=1420×520+320×1820=0.31.19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC , ∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平面PAC , ∴AB ⊥PA ,又∵PA ⊥AD ,AB ∩AD =A , ∴PA ⊥平面ABCD ,PA 平面PAB , ∴平面PAB ⊥平面ABCD . (2)连接BD 交AE 于点O ,连接OF , ∵E 为BC 的中点,BC ∥AD , ∴ BO OD = BE AD = 1 2, ∵PD ∥平面AEF ,PD 平面PBD , 平面AEF ∩平面PBD =OF , ∴PD ∥OF ,∴ BF FP = BO OD = 1 2,以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0), P(0,0,3),E ( 3 2, 32,0),F(2,0,1),设平面ADF 的法向量m =(x 1,y 1,z 1), ∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得⎩⎨⎧2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).设平面DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得⎩⎨⎧ 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4). cos m ,n=m ·n |m ||n |=-23939, ∵二面角A-DF-E 为钝二面角,∴二面角A-DF-E 的余弦值为-23939.20.解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|, 所以|PB|+|PC|=|PD|+|DB|+|PC| =|PE|+|PC|+|AB| =|CE|+|AB|=|AC|+|AB|=4>|BC| 所以点P 的轨迹是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求的方程为x 24+y23=1(y ≠0).(2)由O ,D ,C 三点共线及圆的几何性质,可知PB ⊥CD , 又由直线CE ,CA 为圆O 的切线,可知CE =CA ,O A =O E , 所以△OAC ≌△O EC ,进而有∠ACO =∠ECO ,所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2, 所以△PBC 为等边三角形,即点P 在y 轴上,点P 的坐标为(0,±3)(i)当点P 的坐标为(0,3)时,∠PBC =60,∠BCD =30, 此时直线l 1的方程为y =3(x +1),直线CD 的方程为y =-33(x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ|=165,由⎩⎪⎨⎪⎧x 24+y23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M(x 1,y 1),N(x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN|=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的面积S =1 2|PQ|·|MN|=38465.(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的面积为38465.综上,四边形MPNQ 的面积为38465.21.解:(1)g (a)=ln a 2+4a a 2+a 2-2=2(ln a + 1 a -1),g(a)=2(1a - 1 a )=2(a -1)a,所以0<a <1时,g (a)<0,g (a)单调递减;a >1时,g(a)>0,g (a)单调递增,所以g (a)的最小值为g (1)=0.(2)f(x)= 1x -4a (x +a 2)2=x 2+(2a 2-4a)x +a 4x(x +a 2)2,x >0. 因为y =f (x)有三个不同的零点,所以f (x)至少有三个单调区间, 而方程x 2+(2a 2-4a)x +a 4=0至多有两个不同正根,所以,有⎩⎨⎧2a 2-4a <0,Δ=16a 2(1-a)>0,解得,0<a <1.由(1)得,当x ≠1时,g (x)>0,即ln x +1x-1>0, 所以ln x >- 1x,则x >e -1x (x >0),令x =a 22,得a 22>e - 2 a 2.因为f (e - 2a 2)<- 2 a 2+ 4 a -2=-2(a -1)2a2<0,f (a 2)>0,f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0,所以y =f (x)在(e - 2a 2,a 2),(a 2,1),(1,e 2)内各有一个零点,故所求a 的范围是0<a <1.22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标方程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ; 直线l 的极坐标方程为ρsin θ=2,即ρ= 2sin θ.(2)证明:设A(ρA ,θ),B (ρB ,θ+2),-2<θ< 2.由(1)得|OA|2=ρ2A =41+sin 2θ,|OB|2=ρ2B = 4sin 2(θ+2)=4cos 2θ, 由S △OAB = 1 2×|OA|×|OB|= 12×|AB|×h 可得,h 2=|OA|2×|OB|2|AB|2=|OA|2×|OB|2|OA|2+|OB|2=2.故h 为定值,且h =2.23.解:(1)由题意得|x -1|≥|2x -3|, 所以|x -1|2≥|2x -3|2整理可得3x 2-10x +8≤0,解得 4 3≤x ≤2,故原不等式的解集为{x | 43≤x ≤2}.(2)显然g (x)=f (x)+f (-x)为偶函数, 所以只研究x≥0时g (x)的最大值.g (x)=f (x)+f (-x)=|x -1|-|2x -3|+|x +1|-|2x +3|, 所以x≥0时,g (x)=|x -1|-|2x -3|-x -2 =⎩⎪⎨⎪⎧-4, 0≤x ≤1,2x -6,1<x < 3 2,-2x , x ≥ 32,所以当x = 32时,g (x)取得最大值-3,故x =± 32时,g (x)取得最大值-3.。
2018届山东省日照市高三校际联考数学(理)试题一、单选题 1.设集合,,则( )A.B.C.D.【答案】D【解析】分析:化简集合N ,然后求二者交集即可. 详解:∴点睛:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.若复数,在复平面内对应的点关于轴对称,且,则复数( )A. B. C. D.【答案】C【解析】分析:由z 1=2﹣i ,复数z 1,z 2在复平面内对应的点关于y 轴对称,求出z 2,然后代入,利用复数代数形式的乘除运算化简即可.详解:∵z 1=2﹣i ,复数z 1,z 2在复平面内对应的点关于y 轴对称, ∴z 2=﹣2﹣i .∴==,故选:C点睛:复数的运算,难点是乘除法法则,设,则,.3.已知直线1l : sin 10x y α+-=,直线2l : 3cos 10x y α-+=,若12l l ⊥,则s i n2α=( ) A.23 B. 35± C. 35- D. 35【答案】D【解析】因为12l l ⊥,所以s i n 3c o s αα-=,所以t a n 3α=,所以2222sin cos 2tan 3sin22sin cos sin cos 1tan 5ααααααααα====++. 故选D.4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为( )A.B.C.D. 【答案】A【解析】设圆的半径为r ,则圆的面积2=S r π圆,正六边形的面积22133=6sin6022S r r ⨯⨯⨯=正六边形,所以向圆中随机投掷一个点,该点落在正六边形内的概率222==rS P S r π=正六边形圆A.5.若双曲线的一条渐近线方程为,则的值为( )A.B. C. D.【答案】A【解析】分析:由方程为双曲线确定m 的范围,再利用条件建立m 的方程解之即可.详解:双曲线的一条渐近线的方程为2x ﹣3y=0,可得(3﹣m )(m +1)>0,解得:m ∈(﹣1,3), 所以:x ﹣y=0,是双曲线的渐近线方程,所以,解得:m=.故选:A .点睛:本题考查了双曲线的简单几何性质,渐近线方程的求法,注意m 的取值范围是解题的关键,属于基础题.6.已知p : x R ∀∈, 220x x a ++>; q : 28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A. ()1,+∞B. (),3-∞C. ()1,3D. ()(),13,-∞⋃+∞ 【答案】C【解析】由“p ∧q”是真命题,则p 为真命题,q 也为真命题,若p 为真命题,则044a 0<-<,,∴a >1. 若q 为真命题,即x 2+2ax +2﹣a=0有实根,△=4a 2﹣4(2﹣a )≥0,解得a ≤﹣2或a ≥1.7.某数学爱好者编制了如图的程序框图,其中表示除以的余数,例如.若输入的值为,则输出的值为( )A. B. C. D.【答案】B【解析】分析:由程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得结果. 详解::模拟执行程序框图,可得:,,,满足条件,满足条件,,,满足条件,不满足条件,,满足条件,满足条件,,,…,,可得:,,,∴共要循环次,故.故选:B .点睛:解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 8.已知中,,,,为线段上任意一点,则的范围是( )A. B. C. D.【答案】D【解析】分析:建立平面直角坐标系,然后根据条件即可求出A,C点的坐标,表示,利用二次函数的图象与性质求值域即可.详解:以为坐标原点,为轴、为轴建系,则,,设,所以,故选:D.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.9.已知数列中,,且对任意的,,都有,则()A. B. C. D.【答案】D【解析】分析:令m=1,可得a n+1﹣a n=n+1,再利用累加法可得的通项,再利用裂项法得到==2(﹣),从而可求得的值.详解:∵a1=1,且对任意的m,n∈N,都有a m+n=a m+a n+mn,∴令m=1,则a n+1=a1+a n+n=a n+n+1,即a n+1﹣a n=n+1,∴a n﹣a n﹣1=n(n≥2),…,a2﹣a1=2,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+(n﹣2)+…+3+2+1=,∴==2(﹣),∴=2[(1﹣)+(﹣)+…+(﹣)+(﹣)+(﹣)]=2(1﹣)=,故选:D.点睛::裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.10.某单位实行职工值夜班制度,已知,,,,名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若昨天值夜班,从今天起,至少连续天不值夜班,星期四值夜班,则今天是星期几()A. 二B. 三C. 四D. 五【答案】C【解析】分析:A昨天值夜班,D周四值夜班,得到今天不是周一也不是周五,假设今天是周二,则周二与周三B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周三,则周五与下周一B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;由此得到今天是周四.详解:∵A昨天值夜班,D周四值夜班,∴今天不是周一也不是周五,若今天是周二,则周一A值夜班,周四D值夜班,则周二与周三B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周三,则A周二值夜班,D周四值夜班,则周五与下周一B,C至少有一人值夜班,与已知从今天起B,C至少连续4天不值夜班矛盾;若今天是周四,则周三A值夜班,周四D值夜班,周五E值夜班,符合题意.故今天是周四.故选:C.点睛:本题考查简单的推理,考查合情推理等基础知识,考查推理论证能力,属于中档题.11.已知抛物线:的焦点为,过的直线交于,两点,点在第一象限,,为坐标原点,则四边形面积的最小值为( )A. B. C. D.【答案】B【解析】分析:把直线的方程与抛物线的方程联立,利用根与系数的关系表示四边形面积,借助导函数求最值即可. 详解:设且,易知,设直线由所以易知在上为减函数,所以当时,,故选:B点睛:圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.12.如图,虚线小方格是边长为的正方形,粗实(虚)线画出的是某几何体的三视图,则该几何体外接球的表面积为( )A.B.C.D.【答案】B【解析】分析:由三视图还原原几何体,可知该几何体为三棱锥O ﹣ABC ,在三棱锥O﹣ABC 中,∠AOC=∠ABC=90°,由已知求出其外接球的直径为AC ,则半径R=,再由球的表面积公式求解.详解:由三视图还原原几何体的直观图如图, 该几何体为三棱锥O ﹣ABC ,在三棱锥O ﹣ABC 中,∠AOC=∠ABC=90°,∴其外接球的直径为AC ,则半径R==,∴外接球的表面积该几何体外接球的表面积为S=4πR 2=32π. 故选:B .点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径 .二、填空题13.已知向量()1,0a =, (),2b λ=, 2a b a b -=+,则实数λ=__________. 【答案】12【解析】由()()1,0,2a b λ==,则()()()()22,0,22,2,1,2a b a b λλλ-=-=--+=+,所以()()22222222284,52a ba b λλλλλ-=-+-=-++=++,又由2a b a b -=+,所以228452λλλλ-+=++,解得12λ=. 14.若,满足条件,且,则的最大值为__________.【答案】7【解析】分析:先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数的最大值.详解:由题,画出可行域为如图区域,,当在处时,,故答案为:.点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.15.已知()()100111x a a x +=+- ()()21021011a x a x +-+⋅⋅⋅+-,则8a =__________. 【答案】180 【解析】()()()()1010101121x x x ⎡⎤+=--=-+-⎣⎦,()()100111x a a x +=+-()()2102101...1a x a x +-++-, ()288102180a C ∴=⋅-=,故答案为180.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16.若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,,(为自然对数的底数),有下列命题:①在内单调递增;②和之间存在“隔离直线”,且的最小值为;③和之间存在“隔离直线”,且的取值范围是;④和之间存在唯一的“隔离直线”.其中真命题的序号为__________.(请填写正确命题的序号)【答案】①②④【解析】分析:①求出的导数,检验在x∈(﹣,0)内的导数符号,即可判断;②、③设f(x)、g(x)的隔离直线为y=kx+b,x2≥kx+b对一切实数x成立,即有△1≤0,又≤kx+b对一切x<0成立,△2≤0,k≤0,b≤0,根据不等式的性质,求出k,b的范围,即可判断②③;④存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线,构造函数,求出函数函数的导数,根据导数求出函数的最值.详解:①,,,,在内单调递增,故①正确;②,③设的隔离直线为,则对任意恒成立,即有对任意恒成立.由对任意恒成立得.若则有符合题意;若则有对任意恒成立,又则有,,即有且,,,同理,可得,所以,,故②正确,③错误;④函数和的图象在处有公共点,因此存在和的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为,则隔离直线方程为,即,由恒成立,若,则不恒成立.若,由恒成立,令,在单调递增,,故不恒成立.所以,可得,当恒成立,则,只有,此时直线方程为,下面证明,令,,当时,;当时,;当时,;当时,取到极小值,极小值是,也是最小值,,则,函数和存在唯一的隔离直线,故④正确,故答案为①②④.点睛:本题以函数为载体,考查新定义,关键是对新定义的理解,考查函数的求导,利用导数求最值,考查了逻辑思维能力,考查了函数与方程思想,属于难题.三、解答题17.已知,,分别为三个内角,,的对边,且.(1)求角的大小;(2)若,且的面积为,求的值.【答案】(1);(2).【解析】分析:(1)根据正弦定理边化角,根据三角恒等变换求出A;(2)根据面积求出bc=4,利用余弦定理求出a.详解:(1)由正弦定理得,∵∴,即.∵,∴,∴∴.(2)由:可得.∴,∵,∴由余弦定理得:,∴.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18.已知三棱锥(如图)的平面展开图(如图)中,四边形为边长为的正方形,和均为正三角形,在三棱锥中:(1)证明:平面平面;(2)求二面角的余弦值.【答案】(1)见解析;(2).【解析】分析:(1)设AC的中点为O,连接BO,PO.推导出PO⊥AC,PO⊥OB,从而 PO⊥平面ABC,由此能证明平面PAC⊥平面ABC.(2)由PO⊥平面ABC,OB⊥AC,建立空间直角坐标系,利用向量法能求出二面角A﹣PC﹣B的余弦值.详解:(1)证明:设的中点为,连接,.由题意得,,,,因为在中,,为的中点,所以,因为在中,,,,所以,因为,平面,所以平面,因为平面,所以平面平面.(2)解:由平面,,如图建立空间直角坐标系,则,,,,.由平面,故平面的法向量为,由,,设平面的法向量为,则由得:令,得,,即,.由二面角是锐二面角,所以二面角的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分分)统计结果如下表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:.若,则,,.【答案】(1)(2)见解析.【解析】分析:(1)由题意求出Ez=65,从而μ=65,进而,.由此能求出.(2)由题意知P(z<μ)=P(Z≥μ)=,获奖券面值X的可能取值为20,40,60,80.分别求出相应的概率,由此能求出X的分布列和EX.详解:(1),故,∴,.∴综上,.(2)易知获赠话费的可能取值为,,,.;;;.的分布列为:∴.点睛:求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20.已知椭圆:的焦距为,以椭圆的右顶点为圆心的圆与直线相交于,两点,且,.(1)求椭圆的标准方程和圆的方程;(2)不过原点的直线与椭圆交于,两点,已知直线,,的斜率,,成等比数列,记以线段,线段为直径的圆的面积分别为,,的值是否为定值?若是,求出此值;若不是,说明理由.【答案】(1)椭圆的方程为,圆的方程为;(2)为定值,定值为.【解析】分析:(1)设为的中点,连接,则,所以,又,所以,从而易得关于a,b的方程组,即可得到所求椭圆方程和圆的方程.(2)设直线l的方程为y=kx+m,代入椭圆方程,消去y,根据k1、k、k2恰好构成等比数列,求出k,进而表示出,即可得出结论.详解:(1)如图,设为的中点,连接,则,因为,即,所以,又,所以,所以,所以.由已知得,所以椭圆的方程为,,所以,所以,所以,所以圆的方程为.(2)设直线的方程为,由,得,所以,由题设知,,则故为定值,该定值为.点睛:(1)圆锥曲线中的定点、定值问题是高考中的常考题型,难度一般较大,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是函数思想、数形结合思想、分类讨论思想的考查.(2)求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数(为自然对数的底数).(1)若,,讨论的单调性;(2)若,函数在内存在零点,求实数的范围.【答案】(1)当时,在上单调递减;当时,在上单调递减,在单调递增;(2)的取值范围是.【解析】分析:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围,判断函数的单调性,结合函数的零点,从而确定a的范围即可.详解:解:(I)定义域为故则(1)若,则在上单调递减;(2)若,令.①当时,则,因此在上恒有,即在上单调递减;②当时,,因而在上有,在上有;因此在上单调递减,在单调递增.综上, (1) 当时,在上单调递减;(2) 当时,在上单调递减,在单调递增.(Ⅱ)设,,设,则.(1) 若 ,,在单调递减,故此时函数无零点,不合题意.(2)若 ,①当时,,由(1)知对任意恒成立,故,对任意恒成立,②当时,,因此当时必有零点,记第一个零点为, 当时,单调递增,.由①②可知,当时,必存在零点.(2)当,考察函数 ,由于在 上必存在零点.设在 的第一个零点为,则当时,,故 在上为减函数,又 ,所以当时, ,从而 在上单调递减,故当时恒有 .即,令,则在单调递减,在单调递增.即注意到,因此,令时,则有,由零点存在定理可知函数 在 上有零点,符合题意.综上可知, 的取值范围是 .(Ⅱ)解法二:设,,(1) 若 ,,在单调递减,故此时函数无零点,不合题意.(2)若 ,当时, ,因此当时必有零点,记第一个零点为, 当时,单调递增,又所以,当时,在必存在零点.(3)当,由于 ,令,则在单调递减,在单调递增.即注意到,因此,令时,则有,由零点存在定理可知函数在上存在零点,符合题意.综上可知,的取值范围是 .点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos 3πρθ⎛⎫=-⎪⎝⎭,直线l 过点(0,P 且倾斜角为3π.(1)求曲线C的直角坐标方程和直线l的参数方程;(2)设直线l与曲线C交于A,B两点,求PA PB+的值.【答案】(Ⅰ)曲线C的直角坐标方程为()(2214x y-+=,直线l的参数方程为12{ (x tty==为参数);(Ⅱ)7.【解析】试题分析:(1)由极坐标与直角坐标的互化公式,即可得到曲线C的直角坐标方程,根据直线参数的形式0{ (x x tcosty y tsinαα=+=+为参数),即可求出直线的参数方程;(2)将直线的参数方程代入圆的方程,得到12t t+,即可求解PA PB+的值.试题解析:(1)曲线:4cos4cos cos4sin sin333Cπππρθρθθ⎛⎫=-⇒=+⎪⎝⎭,所以22cos sinρρθθ=+,即222x y x+=+,得曲线C的直线坐标方程为()(2214x y-+=,直线l的参数方程为12{ (x tty==-为参数).(2)将12{ (x tty==为参数)代入圆的方程,得21142t⎛⎫-+-=⎪⎝⎭⎝,整理得2790t t=+=,所以127PA PB t t+=+=.23.选修4-5:不等式选讲已知函数的最大值为.(1)求的值以及此时的的取值范围;(2)若实数满足,证明:.【答案】(1);.(2)证明见解析.【解析】分析:(1)去掉绝对值符号,利用函数的图象求解最小值;(2)由(1)可知,利用,把问题转化为二次函数最值问题.详解:(1)解:依题意得,当时,;当时,,此时;当时,,所以的最大值为,即,此时.(2)证明:由,得,,所以,所以,所以.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2017 — 2018学年度高三第三次调研测试文科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试 题卷一并交回。
注意事项:1 •答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用 0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3•请按照题号在各题的答题区域 (黑色线框)内作答,超出答题区域书写的答案无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
本大题共 12题,每小题5分,共60分,在每小题给出的四个选项中,只有个是符合题目要求。
设全集 U =Z , A ={-1,1,3,5,7,9}, B ={-1,5,7},贝V AplG u B)二B. {-1,5,7}D. {-1,1,3,5,9}__nA . -P : X 。
R,X o 2 乞3X oB . -p: x R,x 22< 3x2C . — p: 一x R,x ■ 2 3xnD . _p: x 0 R,x 0 2 _ 3x 。
2. 已知复数 i z =1—i(i 为虚数单位),则z 的虚部为3.1 .A. i2已知命题P :X o1 .B.i 2R,x ; 2 3x 0,则命题 1 C.2p 的否命题为D.4. F 列各组向量中,可以作为基底的是A. q =(0,0), e ? =(1,2)B.eiC.e 1 = (3,5), e 2 = (6,10)D.6 = (-1,2),0 = (5,7)、选择题: 1.A. {1,3,9}C.{-1,1,3x - y 3 _ 0设x, y 满足约束条件*x + yZ0,则z = 3x + y 的最小值是x 兰2S n ,则 S n =,定点的坐标是是某几何体的三视图,则该几何体的体积为C. D.5.6. A. -5 B. 4 C. -3D. 11已知等差数列{务}的公差不为0,可=1,且32,34,38成等比数列,设{a n }的前n 项和A.n( n 1) 2B.2C. n 2 12 D.n(n 3) 47.以抛物线y 2=8x 上的任意一点为圆心作圆与直线X 二-2相切,这些圆必过一定点,则8. 9. A. (0,2)B. (2, 0)执行如图所示的程序框图,当输出则输入n 的值可以为A.B. C. D.如图,网格纸上小正方形的边长为 C.S =210 时,1,粗实线画出的 (4, 0) D. (0, 4)——n = n - 1否甲S = n ・S(■结束2)A.14二B.310二3 5-J IS = 1C 开始3*/ 输入n // 输岀S /n < 5 ?是俯视图正视图F I +•B 8;侧视图-10.已知锐角:•满足cos( ) =cos2>,则sin〉cos 等于414 411.朱世杰是历史上最伟大的数学家之一, 他所著的《四元玉鉴》卷中如像招数”五问有如下问题:今有官司差夫一千八百六十四人筑堤•只云初日差六十四人,次日转多七人,每 人日支米三升,共支米四百三石九斗二升, 问筑堤几日”.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出 64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”.这个问题中, 前5天应发大米12•对于定义域为 R 的函数f(x),若同时满足下列三个条件:①且 X = 0 时,都有 xf (x)0 ;③当 x 1 ::: 0 x 2,且 I 片 |=| x 2 |时,都有 f (xj ::: f (x 2),则称f(x)为偏对称函数”.现给出下列三个函数:3 3 2 x ] ln(1—x), x 兰 0 f i (x)-X x ; f 2(x) = e - x-1; f 3(x)二212x, x > 0则其中是偏对称函数”的函数个数为 A. 0B. 1C. 2D. 3二、填空题:本大题共 4个小题,每小题5分。
日照一中2017-2018-2018学年高三上学期第三次月考数学理科试题12第Ⅰ卷 选择题(共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或32. 若i 为虚数单位,图1中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z1-2i的共轭复数是( )A .-35i B.35I C .-i D .i3. 设βα、为两个不同的平面,m 、n 为两条不同的直线,且,m n αβ⊂⊂,有两个命题:p :若//m n ,则//αβ;q :若m β⊥,则αβ⊥;那么A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ” 是假命题D .“非p 且q ”是真命题4. 已知a>0且a ≠1,若函数f(x)=log a (x +x 2+k)在(-∞,+∞)上既是奇函数,又是增函数,则函数g(x)=log a |x -k|的图象是( )5. 设偶函数()x f 满足()()042≥-=x x x f ,则不等式()2-x f >0的解集为A.{x x <2-或x >}4B.{x x <0或x >}4C.{x x <0或x >}6D.{x x <2-或x >}26.一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.15B.14C.13D.127.则这个几何体的外接球的表面积为( A .23π B.8π3 C .4 3 D.16π38.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为 ( )A.16B.14C.13D.129. 已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件10.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( ) A .[-2,2] B .[2,3] C .[3,2]D .[2,2]11.项数为n 的数列a 1,a 2,a 3,…,a n 的前k 项和为S k (k =1,2,3,…,n ),定义S 1+S 2+…+S nn为该项数列的“凯森和”,如果项数为99项的数列a 1,a 2,a 3,…,a 99的“ 凯森和”为1 000,那么项数为100的数列100,a 1,a 2,a 3,…,a 99的“凯森和”为( )A .991B .1 001C .1 090D .1 100 12.设定义在R 上的函数f (x )=⎩⎪⎨⎪⎧1|x -2|,x ≠2,1, x =2,若关于x 的方程f 2(x )+af (x )+b =0有3个不同实数解x 1、x 2、x 3,且x 1<x 2<x 3,则下列说法中错误的是A .x 21+x 22+x 23=14 B .1+a +b =0 C .a 2-4b =0D .x 1+x 3=4第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中相应题的横线上. 13.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.14.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________.15.已知10(2)xa e x dx =+⎰(e 为自然对数的底数),函数ln ,0()2,0xx x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________. 16.16.已知,x y 满足约束条件224200x y x y y ⎧+≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的最大值是___________三、解答题:本大题共6小题,共74分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数f(x)=cos(2x +π3)+sin 2x(1)求函数f(x)的单调递减区间及最小正周期;(2)设锐角△ABC 的三内角A ,B ,C 的对边分别是a ,b ,c ,若c =6,cosB =13,f(C 2)=-14,求b.18.(本小题满分12分)“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:3221x 80x 5 040x,x 120,144)3y ,1x 200x 80 000,x 144,500)2⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩[[且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损.(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 19.(本小题满分12分)已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解,若命题p 是真命题,命题q 是假命题,求a 的取值范围. 20.(本小题满分12分)已知在四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2,AB =1,PA ⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点. (1)证明:PF ⊥FD ;(2)判断并说明PA 上是否存在点G ,使得EG ∥平面PFD ;(3)若PB 与平面ABCD 所成的角为45°,求二面角A -PD -F 的平面角的余弦值.21.(本小题满分13分) 已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 满足11b =,且点*1(,)()n n P b b n N +∈在直线2y x =+上.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)求数列{}n n a b ⋅的前n 项和n D ;(Ⅲ)设22*sincos ()22n n n n n c a b n N ππ=⋅-⋅∈,求数列{}n c 的前2n 项和2n T . 22.(本小题满分13分)已知二次函数g(x)对任意x ∈R 都满足g(x-1)+g(1-x)=x 2-2x-1且g(1)=-1,设函数f(x)=g(x+12)+ m ln x +98(m ∈R ,x>0).(1)求g(x)的表达式;(2)若存在x ∈(0,+∞),使f(x)≤0成立,求实数m 的取值范围; (3)设1<m ≤e ,H(x)=f(x)-(m+1)x ,求证:对于任意x 1,x 2∈[1,m ],恒有|H(x 1)-H(x 2)|<1.高三数学(理科)练习题参考答案及评分标准一、选择题:1. B [解析] 本小题主要考查集合元素的性质和集合的关系.解题的突破口为集合元素的互异性和集合的包含关系.由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1,经检验,m =1时B ={1,1}矛盾,m =0或3时符合,故选B.2.C [解析] 由题意z =2+i ,所以z 1-2i =2+i 1-2i = 2+i 1+2i1-2i 1+2i=i ,则其共轭复数是-i ,选C.3. D4. A[解析]由已知f(0)=0,得log a k =0,∴k =1, ∴f(x)=log a (x +x 2+1),又∵其为增函数,∴a>1.故g(x)=log a |x -1|的图象可由y =log a |x|的图象向右平移一个单位得到,且在(-∞,1)上为减函数,在(1,+∞)上为增函数,故选A.5. B6.A [解析] 本题主要考查向量的线性运算.属于基础知识、基本运算的考查.过点F 作FG ∥CD 交AC 于G ,则G 是AC 的中点,且AK KG =1312=23,所以AK →=25AG →=25×12AC →=15AC →,则λ的值为15. 7.D [解析] 设几何体的外接球的半径为r ,由(3-r )2+1=r 2得r =23,几何体的外接球的表面积为16π3.8.D [解析] 函数y =tan ⎝⎛⎭⎪⎫ωx +π4向右平移π6后得到 y =tan ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx -ωπ6+π4.又因为y =tan ⎝ ⎛⎭⎪⎫ωx +π6,∴令π4-ωπ6=π6+k π,∴π12=ωπ6+k π(k ∈Z),由ω>0得ω的最小值为12.9. D [解析] 由于f (x )是R 的上的偶函数,当f (x )在[0,1]上为增函数时,根据对称性知f (x )在[-1,0]上为减函数.根据函数f (x )的周期性将f (x )在[-1,0]上的图象向右平移2个周期即可得到f (x )在[3,4]上的图象,所以f (x )在[3,4]上为减函数;同理当f (x )在[3,4]上为减函数时,根据函数的周期性将f (x )在[3,4]上的图象向左平移2个周期即可得到f (x )在[-1,0]上的图象,此时f (x )为减函数,又根据f (x )为偶函数知f (x )在[0,1]上为增函数(其平移与对称过程可用图表示,如图1-1所示),所以“f (x )为[0,1]上的减函数”是“f (x )为[3,4]上的减函数”的充要条件,选D.10.D[解析]由已知f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎪⎫θ+π3, 又θ∈⎣⎢⎡⎦⎥⎤0,5π12.∴π3≤θ+π3≤3π4,∴22≤sin ⎝⎛⎭⎪⎫θ+π3≤1,∴2≤f ′(1)≤2. 答案 D11. C [解析] 项数为99项的数列a 1,a 2,a 3,…,a 99的“凯森和”为1 000,所以S 1+S 2+…+S 9999=1 000,又100,a 1,a 2,a 3,…,a 99的“凯森和”为100+100+S 1+100+S 2+…+100+S 99100=100+S 1+S 2+…+S 99100=100+990=1 090,故选C.12.C[解析] 作出函数f (x )的图象,令t =f (x ),则方程f 2(x )+af (x )+b =0化为t 2+at +b =0, ∵t =f (x )>0,故要使原方程有3个不同的实数解, 则需方程t 2+at +b =0的根,t 1=t 2=1或t 1=1,t 2≤0,故Δ=a 2-4b =0或⎩⎪⎨⎪⎧Δ=a 2-4b >0b ≤0,故C 错误.令f (x )=1,易得x 1=1,x 2=2,x 3=3, 所以A 、B 、D 皆正确. 答案 C二、填空题: 13.答案:15[解析] 依题意得 n 2=10× 1+19 2=100,∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0, 又 m ∈N *,所以 m =5, 所以m +n =15. 14答案 2[解析]设x =a 与f (x )=sin x 的交点为M (a ,y 1), x =a 与g (x )=cos x 的交点为N (a ,y 2), 则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫a -π4≤ 2.15.答案 7; 16.答案[解析]由2z x y =+得,2y x z =-+.作出不等式对应的区域,,平移直线2y x z =-+,由图象可知,当直线2y x z =-+与圆在第一象限相切时,直线2y x z =-+的截距最大,此时z 最大.直线与圆的距离2d ==,即z =±,所以目标函数2z x y =+的最大值是三、解答题:17【解析】(1)∵f(x)=cos(2x +π3)+sin 2x =cos2xcosπ3-sin2xsin π3+1-cos2x 2=12cos2x -32sin2x +12-12cos2x=-32sin2x +12,…………………………………3分 ∴最小正周期T =2π2=π,令2k π-π2≤2x ≤2k π+π2(k ∈Z),得k π-π4≤x ≤k π+π4,k ∈Z , ∴f(x)的单调递减区间是[k π-π4,k π+π4](k ∈Z). …………………………………6分 (2)由(1)f(x)=-32sin2x +12得: f(C 2)=-32sinC +12=-14, ∴sinC =32, 又cosB =13,∴sinB =1-(13)2=223,∴b sinB =c sinC ,即b =c ·sinB sinC=6×22332=83, 故b =83. …………………………………12分18【解析】(1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -(12x 2-200x +80 000)=-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S<0.因此,该项目不会获利. 当x =300时,S 取得最大值-5 000,所以政府每月至少需要补贴5 000元才能使该项目不亏损. …………………………6分 (2)由题意可知,食品残渣的每吨平均处理成本为:21x 80x 5 040,x 120,144)y 3.1x x 80 000x 200,x 144,500)2⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩[[ ①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,yx 取得最小值240;…………………………………8分②当x ∈[144,500)时,y x =12x +80 000x-200≥212x ·80 000x-200=200. 当且仅当12x =80 000x ,即x =400时,yx 取得最小值200.∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低……………………12分 19.【解析】∵x 1,x 2是方程x 2-mx -2=0的两个实根,∴x 1+x 2=m ,x 1·x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8, ∴当m ∈[-1,1]时,|x 1-x 2|max =3,…………………………………4分 由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,可得:a 2-5a -3≥3,∴a ≥6或a ≤-1,…………………………………6分 ∴命题p 为真命题时a ≥6或a ≤-1, 若不等式ax 2+2x -1>0有解,则①当a>0时,显然有解,②当a =0时,ax 2+2x -1>0有解, ③当a<0时,∵ax 2+2x -1>0有解, ∴Δ=4+4a>0,∴-1<a<0,所以不等式ax 2+2x -1>0有解时a>-1.又∵命题q 是假命题,∴a ≤-1, 故命题p 是真命题且命题q 是假命题时,a 的取值范围为a ≤-1. ……12分20. 【解析】方法一:(1)∵PA ⊥平面ABCD ,∠BAD =90°, AB =1,AD =2,建立如图所示的空间直角坐标系Axyz ,则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).不妨令P(0,0,t),∵PF =(1,1,-t),DF=(1,-1,0), ∴PF ·DF=1×1+1×(-1)+(-t)×0=0,即PF ⊥FD. …………………………………4分(2)存在.设平面PFD 的一个法向量为n =(x ,y ,z),结合(1),由PF 0DF 0⎧⋅=⎪⎨⋅=⎪⎩n n ,得⎩⎪⎨⎪⎧x +y -tz =0x -y =0,令z =1,解得:x =y =t 2.∴n =(t 2,t2,1).设G 点坐标为(0,0,m),E(12,0,0),则EG =(-12,0,m),要使EG ∥平面PFD ,只需EG ·n =0,即(-12)×t 2+0×t 2+m ×1=m -t4=0,得m =14t ,从而满足AG =14AP 的点G 即为所求. …………………………………8分(3)∵AB ⊥平面PAD ,∴AB 是平面PAD 的法向量,易得AB=(1,0,0),又∵PA ⊥平面ABCD ,∴∠PBA 是PB 与平面ABCD 所成的角,得∠PBA =45°,PA =1,结合(2)得平面PFD 的法向量为n =(12,12,1),∴cos 〈AB ,n 〉=AB |AB |||⋅⋅nn =1214+14+1=66, 由题意知二面角A -PD -F 为锐二面角. 故所求二面角A -PD -F 的平面角的余弦值为66.…………………………………12分 方法二:(1)连接AF ,则AF =2,DF =2, 又AD =2,∴DF 2+AF 2=AD 2,∴DF ⊥AF , 又PA ⊥平面ABCD ,∴DF ⊥PA ,又PA ∩AF =A , ∴DF ⊥平面PAF ,又∵PF ⊂平面PAF ,∴DF ⊥PF.(2)过点E 作EH ∥DF 交AD 于点H ,则EH ∥平面PFD ,且有AH =14AD ,再过点H 作HG ∥DP 交PA 于点G ,则HG ∥平面PFD 且AG =14AP ,∴平面EHG ∥平面PFD ,∴EG ∥平面PFD. 从而满足AG =14AP 的点G 即为所求.(3)∵PA ⊥平面ABCD ,∴∠PBA 是PB 与平面ABCD 所成的角,且∠PBA =45°,∴PA =AB =1,取AD 的中点M ,则FM ⊥AD ,FM ⊥平面PAD ,在平面PAD 中,过M 作MN ⊥PD 于N ,连接FN ,则PD ⊥平面FMN ,则∠MNF 即为二面角A —PD —F 的平面角,∵Rt △MND ∽Rt △PAD ,∴MN PA =MD PD ,∵PA =1,MD =1,PD =5,∴MN =55,又∵∠FMN =90°,∴FN =65=305,∴cos ∠MNF =MN FN =66.2122.【解析】(1)设g(x)=ax 2+bx+c(a ≠0),于是g(x-1)+g(1-x)=2a(x-1)2+2c=(x-1)2-2, 所以1a .2c 1⎧=⎪⎨⎪=-⎩又g(1)=-1,则1b 2=-.所以g(x)=211x x 1.22-- …………………………………4分 (2)f(x)=g(x+12)+m ln x +98=12x 2+m ln x (m ∈R,x>0). 当m>0时,由对数函数的性质知,f(x)的值域为R ;当m=0时,f(x)=2x 2,对任意x>0,f(x)>0恒成立; 当m<0时,由f ′(x)=x+m x =0得x = 列表:这时f(x)min 2-+ 由f(x)min ≤0得m 02m 0⎧-+≤⎪⎨⎪<⎩,所以m ≤-e,综上,存在x>0使f(x)≤0成立,实数m 的取值范围是(-∞,-e ]∪(0,+∞).…………8分(3)由题知H(x)=12x 2-(m+1)x+mlnx, ()()()x 1x m H x .x --'=因为对任意x ∈[1,m ],()()()x 1x m H x 0,x--'=≤所以H(x)在[1,m ]内单调递减. 于是|H(x 1)-H(x 2)|≤H(1)-H(m)=12m 2-mlnm-12. 要使|H(x 1)-H(x 2)|<1恒成立,则需12m 2-mlnm-12<1成立, 即12m-lnm-32m <0.记()13h m m lnm (1m e)22m=--<≤,则 ()221133111h m ()0,2m 2m 2m 33'=-+=-+> 所以函数h(m)=12m-lnm-32m 在(1,e ]上是单调增函数, 所以h(m)≤h(e)=e 2-1-32e =()()e 3e 12e -+<0,故命题成立. …………………13分。
2018届第三次联考理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合y x y x M ,|),{(=为实数,且}222=+y x ,y x y x N ,|),{(=为实数,且}2=+y x ,则N M 的元素个数为( )A .0B .1C .2D .32.设等差数列{}n a 的前n 项和为n S ,若30953==S S ,,则=++987a a a ( ) A .63 B .45 C .36 D .273.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥--≤0340120y x y x y ,则y x z 53+=的取值范围是( )A .[)∞+,3 B .[]3,8- C .(]9,∞- D .[]9,8- 4.函数x x x y sin ||ln 1||ln 1⋅+-=的部分图象大致为( )A .B .C. D .5.设函数()()ϕ+=x x f 3cos ,其中常数ϕ满足0<ϕ<π-.若函数)(')()(x f x f x g +=(其中)('x f 是函数)(x f 的导数)是偶函数,则ϕ等于( ) A .3π-B .π-65 C. 6π- D .32π-6.执行下面的程序框图,如果输入的k b a ,,分别为1,2,3,输出的815=M ,那么,判断框中应填入的条件为( )A .k n <B .k n ≥ C.1+<k n D .1+≤k n7.已知()()()()()nn ni b i b i b i b i +-+++-++-++-=+-2222122100 i n ,2≥(为虚数单位),又数列{}n a 满足:当1=n 时,21-=a ;当2≥n ,n a 为()222i b +-的虚部,若数列⎭⎬⎫⎩⎨⎧-n a 2的前n 项和为n S ,则=2018S ( ) A .20182017 B .20172018 C.20184035 D .201740338.如图,在同一个平面内,三个单位向量,,满足条件:与的夹角为α,且7tan =α,与与的夹角为45°.若()R n m OB n OA m OC ∈+=,,则n m +的值为( )A .3B .223 C.23 D .229.四面体ABC S -中,三组对棱的长分别相等,依次为x ,,45,则x 的取值范围是( )A .()412,B .()93, C. ()413, D .()92,10.从2个不同的红球、2个不同的黄球、2个不同的篮球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有( ) A .42种 B .36种 C.72种 D .46种11.已知点F 为双曲线()0,1:2222>=-b a by a x E 的右焦点,直线)0(>=k kx y 与E 交于NM ,两点,若NF MF ⊥,设β=∠MNF ,且⎥⎦⎤⎢⎣⎡ππ∈β612,,则该双曲线的离心率的取值范围是( ) A .[]62,2+ B .[]13,2+ C. []62,2+ D .[]13,2+12.已知()()2211,,y x B y x A 、是函数()x x x f ln =与()2xkx g =图象的两个不同的交点,则()21x x f +的取值范围是( )A .⎪⎭⎫⎝⎛+∞,2ln 2e e B .⎪⎭⎫ ⎝⎛e e e 1,2ln 2 C.⎪⎭⎫ ⎝⎛e 10, D .⎪⎭⎫⎝⎛0,2ln 2e e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知函数)(x f y =是定义在R 上的奇函数,则()⎰=⎥⎦⎤⎢⎣⎡+-3112dx x x f . 14.已知函数()x b x a x f cos sin -=,若⎪⎭⎫ ⎝⎛+π=⎪⎭⎫⎝⎛-πx f x f 44,则函数13++=b ax y 恒过定点. 15.已知几何体的三视图如图所示,其中俯视图为一正方形,则该几何体的表面积为.16.若函数()x f 的图象上存在不同的两点()()2211,,,y x B y x A ,其中2211,,,y x y x 使得222221212121y x y x y y x x +⋅+-+的最大值为0,则称函数()x f 是“柯西函数”.给出下列函数:①()()30ln <<=x x x f ; ②()()01>+=x xx x f ; ③()822+=x x f ; ④()822-=x x f .其中是“柯西函数”的为(填上所有正确答案的序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足*∈-=N n n S T n n ,22. (Ⅰ)求321,,a a a 的值; (Ⅱ)求数列{}n a 的通项公式.18.某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.(Ⅰ)若小店一天购进16份,求当天的利润y (单位:元)关于当天需求量n (单位:份,N n ∈)的函数解析式;(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)小店一天购进16份这种食品,X 表示当天的利润(单位:元),求X 的分布列及数学期望;(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份? 19如图,在四棱锥ABCD P -中,ABCD 是平行四边形,︒=∠==120,1BAD BC AB ,2==PC PB ,F E PA ,,2=分别是PD AD ,的中点.(Ⅰ)证明:平面⊥EFC 平面PBC ; (Ⅱ)求二面角P BC A --的余弦值.20.已知椭圆()01:2222>>=+b a b y a x C 的离心率为23,21A A 、分别为椭圆C 的左、右顶点点()1,2-P 满足121=⋅PA PA . (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 经过点P 且与C 交于不同的两点N M 、,试问:在x 轴上是否存在点Q ,使得QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标及定值;若不存在,请说明理由.21.已知函数()()221x a e x x f x--=,其中R a ∈. (Ⅰ)函数()x f 的图象能否与x 轴相切?若能,求出实数a ,若不能,请说明理由; (Ⅱ)求最大的整数a ,使得对任意()+∞∈∈,0,21x R x ,不等式()()221212x x x f x x f ->--+恒成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知直线l 的参数方程为⎩⎨⎧α=α+=sin cos t y t m x (t 为参数,π<α≤0),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θ=ρcos 4,射线4,44π+ϕ=θ⎪⎭⎫ ⎝⎛π<ϕ<π-ϕ=θ,4π-ϕ=θ分别与曲线C 交于C B A 、、三点(不包括极点O ).(Ⅰ)求证:OA OC OB 2=+;(Ⅱ)当12π=ϕ时,若C B 、两点在直线l 上,求m 与α的值.23.选修4-5:不等式选讲已知函数()a x a x x f 222-+-+=. (Ⅰ)若()31<f ,求实数a 的取值范围;(Ⅱ)若不等式()2≥x f 恒成立,求实数a 的取值范围.参考答案一、选择题1-5: BADAA 6-10: CCBCA 11、12:DD 二、填空题13.3ln 14.()31, 15. 23224++ 16.① ④ 三、解答题17.解:(Ⅰ)∵12111-==S T S ,111a S ==,∴11=a . ∵422221-==+S T S S ,∴42=a . ∵9233321-==++S T S S S ,∴103=a .(Ⅱ)∵ 22n S T n n -=①,()21112--=--x S T n n …②,∴①-②得,()2122≥+-=n n a S n n ,∵112211+⨯-=a S , ∴()1122≥+-=n n a S n n …③,32211+-=--n a S n n …④, ③-④得,()2221≥+=-n a a n n , )2(221+=+-n n a a .∵321=+a ,∴{}2+n a 是首项3公比2的等比数列,1232-⨯=+n n a , 故2231-⨯=-n n a .18.解:(Ⅰ)当日需求量16≥n 时,利润80=y , 当日需求量16<n 时,利润649)16(45-=--=n n n y ,所以y 关于n 的函数解析式为()N n n n n y ∈⎩⎨⎧≥<-=16,8016,649.(Ⅱ)(i)X 可能的取值为62,71,80,并且()()2.071,1.062====X P X P ,()7.080==X P .X 的分布列为:X 62 71 80 P0.10.20.7X 的数学期望为()4.767.0802.0711.062=⨯+⨯+⨯=X E 元.(ii)若小店一天购进17份食品,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 58 67 76 85 P0.10.20.160.54Y 的数学期望为()26.7754.08516.0762.0671.058=⨯+⨯+⨯+⨯=Y E 元.由以上的计算结果可以看出,()()Y E X E <,即购进 17 份食品时的平均利润大于购进 16份时的平均利润.所以,小店应选择一天购进 17 份. 19.解法一:(Ⅰ)取BC 中点G ,连AC AG PG ,,,∵PC PB =,∴BC PG ⊥, ∵ABCD 是平行四边形,1==BC AB ,120=∠BAD ,∴60=∠ABC ,∴ABC ∆是等边三角形,∴BC AG ⊥,∵G PG AG = ,∴⊥BC 平面PAG ,∴PA BC ⊥. ∵F E ,分别是PD AD , 的中点,∴PA EF //,AG EC //,∴EF BC ⊥,EC BC ⊥,∵E EC EF = ,∴⊥BC 平面EFC , ∵⊂BC 平面PBC ,∴平面⊥EFC 平面PBC . (Ⅱ)由(Ⅰ)知BC AG BC PG ⊥⊥,, ∴PGA ∠是二面角P BC A --的平面角. ∵2,23,27412===-=PA AG PG , 在PAG ∆中,根据余弦定理得,7212cos 222=⋅-+=∠AG PG PA AG PG PGA , ∴二面角P BC A --的余弦值为721-. 解法二:(Ⅰ)∵ABCD 是平行四边形,1==BC AB ,120=∠BAD ,∴60=∠ADC ,∴ADC ∆是等边三角形,∵E 是AD 的中点, ∴AD CE ⊥,∵BC AD //, ∴BC CE ⊥.分别以,的方向为x 轴、y 轴的正方向,C 为坐标原点, 如图建立空间直角坐标系.则()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛0,21,23,0,0,23,0,0,0A E C ,⎪⎪⎭⎫ ⎝⎛-0,21,23D , 设()z y x P ,,2==4=,解得1,21,23==-=z y x ,∴可得⎪⎪⎭⎫⎝⎛-1,21,23P , ∵F 是PD 的中点,∴⎪⎭⎫ ⎝⎛21,0,0F ,∵0=∙CF CB ,∴CF CB ⊥,∵BC CE ⊥,C CF CE = ,∴⊥BC 平面EFC ,∵⊂BC 平面PBC ,∴平面⊥EFC 平面PBC .(Ⅱ)由(Ⅰ)知,()0,1,0=CB ,⎪⎪⎭⎫⎝⎛-=1,21,23,设z y x ,,=是平面PBC 的法向量,则⎪⎩⎪⎨⎧⊥⊥n CB ,∴⎪⎩⎪⎨⎧=++-=∙==∙021230z y x y , 令2-=x ,则)3,0,2(--=, 又)1,0,0(=是平面ABC 的法向量,∴721,cos -=<, ∴二面角P BC A --的余弦值为721-. 注:直接设点()z F ,,00,或者说⊥CF 平面ABCD ,AD PA ⊥,酌情扣分. 20.解:(Ⅰ)依题意,()0,1a A -、()0,2a A ,()12-,P , ∴()22151,2)1,2a a a PA -=-⋅--=⋅(, 由121=⋅PA ,0>a ,得2=a ,∵23==a c e , ∴1,3222=-==c a b c ,故椭圆C 的方程为1422=+y x . (Ⅱ)假设存在满足条件的点()0,t Q .当直线l 与x 轴垂直时, 它与椭圆只有一个交点,不满足题意.因此直线l 的斜率k 存在,设)2(1:-=+x k y l ,由⎪⎩⎪⎨⎧=+-=+14)2(122y x x k y ,消y 得 ()()01616816412222=+++-+k k x k kx k ,设()()2211,,y x N y x M 、,则22212221411616,41816kkk x x k k k x x ++=++=+, ∵()()()()()()t x t x t x k kx t x k kx tx yt x y k k QN QM -----+---=-+-=+21122122111212 ()()()()()()()2222212121212824284122122tk t k t t k t t x x t x x tk x x kt k x kx +-+-+-=++-+++++-=, ∴要使对任意实数Q N Q M k k k +,为定值,则只有2=t ,此时,1=+Q N Q M k k . 故在x 轴上存在点()0,2Q ,使得直线QM 与直线QN 的斜率的和为定值1. 21.解:(Ⅰ)由于ax xe x f x -=)('. 假设函数()x f 的图象与x 轴相切于点()0,t ,则有⎩⎨⎧==0)('0)(t f t f ,即()⎪⎩⎪⎨⎧=-=--0'02'12at te t a e t . 显然0',0>=≠a e t 代入方程()02'12=--t a e t 中得,0222=+-t t . ∵04<-=∆,∴无解.故无论a 取何值,函数()x f 的图象都不能与x 轴相切. (Ⅱ)依题意,()()()()21212121x x x x x x f x x f +-->--+()()()()21212121x x x x f x x x x f -+->+++⇔恒成立.设()x x f x g +=)(,则上式等价于()()2121x x g x x g ->+,要使()()2121x x g x x g ->+对任意()+∞∈∈,0,21x R x 恒成立,即使()()x x a e x x g x+--=221在R 上单调递增, ∴01)('≥+-=ax xe x g x在R 上恒成立.则1,01)1('+≤≥+-=e a a e g ,∴0)('≥x g 在R 上成立的必要条件是:1+≤e a .下面证明:当3=a 时,013≥+-x xe x恒成立.设()1--=x e x h x ,则1)('-=x e x h ,当0<x 时,0)('<x h ,当0>x 时,0)('>x h , ∴0)0()(min ==h x h ,即1,+≥∈∀x e R x x .那么,当0≥x 时,()011213,222≥-=+-≥+-+≥x x x x xe x x xe x x ; 当0<x 时,0)13(13,1>+-=+-<xe x x xe e x x x ,∴013≥+-x xe x 恒成立. 因此,a 的最大整数值为 3.22.解:(Ⅰ)证明:依题意,ϕ=cos 4OA ,⎪⎭⎫ ⎝⎛π-ϕ=⎪⎭⎫ ⎝⎛π+ϕ=4cos 4,4cos 4OC OB , 则OA OC OB 2cos 244cos 44cos 4=ϕ=⎪⎭⎫ ⎝⎛π-ϕ+⎪⎭⎫ ⎝⎛π+ϕ=+. (Ⅱ)当12π=ϕ时,C B 、两点的极坐标分别为⎪⎭⎫ ⎝⎛π-⎪⎭⎫ ⎝⎛π63232,,,, 化直角坐标为()()3331-,,,C B .经过点C B 、的直线方程为()23--=x y ,又直线l 经过点()0,m ,倾斜角为α,故32,2π=α=m . 23.解:(Ⅰ)∵()31<f ,∴321<-+a a , ①当0≤a 时,得32,3)21(-><-+-a a a ,∴032≤<-a ; ②当210<<a 时,得2,3)21(-><-+a a a ,∴210<<a ; ③当21≥a 时,得34,3)21(<<--a a a ,∴3421<≤a . 综上所述,实数a 的取值范围是⎪⎭⎫⎝⎛-3432,. (Ⅱ)∵()a x a x x f 2122-+-+=,根据绝对值的几何意义知,当21a x -=时,()x f 的值最小, ∴221≥⎪⎭⎫ ⎝⎛-a f ,即2251>-a ,解得56>a 或52-<a .∴实数a 的取值范围是⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,5652, .。
日照市高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.2. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 3. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④4. 若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣5. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 6. 直线x+y ﹣1=0与2x+2y+3=0的距离是( ) A.B.C.D.7. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.088. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=9. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3C .5D .910.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、2511.设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=212.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 . 14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.16.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是 .17.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .18.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题19.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.20.已知函数f (x )=和直线l :y=m (x ﹣1).(1)当曲线y=f (x )在点(1,f (1))处的切线与直线l 垂直时,求原点O 到直线l 的距离; (2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(3)求证:ln <(n ∈N +)21.已知函数f (x )=|x ﹣a|.(Ⅰ)若不等式f (x )≤2的解集为[0,4],求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若∃x 0∈R ,使得f (x 0)+f (x 0+5)﹣m 2<4m ,求实数m 的取值范围.22.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.23. 坐标系与参数方程线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.24.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.25.(本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且C b B c A a cos cos cos 2+=. (1)A cos 的值;(2)若422=+c b ,求ABC ∆的面积.26.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示(Ⅰ)求函数f(x)的解析式(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,其中a<c,f(A)=,且a=,b=,求△ABC的面积.日照市高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.2.【答案】A【解析】考点:斜二测画法.3.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D4.【答案】B【解析】解:∵cos (﹣α)=,∴cos (+α)=﹣cos=﹣cos (﹣α)=﹣.故选:B .5. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.6. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .7. 【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.8. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .9. 【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .10.【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =.11.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B12.【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,∴1ab =,∴log 1a b =-,故选B.二、填空题13.【答案】 {a|或} .【解析】解:∵二次函数f (x )=x 2﹣(2a ﹣1)x+a+1 的对称轴为 x=a ﹣,f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a ﹣≥2,或a ﹣≤1,∴a ≥,或 a ≤,故答案为:{a|a ≥,或 a ≤}.【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.14.【答案】1 【解析】 试题分析:()()()()2213111222=-+--+-=m AB ,解得:1=m ,故填:1.考点:空间向量的坐标运算 15.【答案】①②④ 【解析】16.【答案】3.【解析】解:对于①,向量是既有大小又有方向的量,=||•的模相同,但方向不一定相同,∴①是假命题;对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•,∴②是假命题;对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣,∴③是假命题;综上,上述命题中,假命题的个数是3.故答案为:3.【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.17.【答案】20【解析】考点:棱台的表面积的求解.18.【答案】1 【解析】三、解答题19.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2)5,5.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为|4cos 3sin 6|5d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取得最大值,最大值为5.当sin()1θα+=时,||PA 取得最小值,最小值为5.考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 20.【答案】【解析】(Ⅰ)解:由f (x )=,得,∴,于是m=﹣2,直线l 的方程为2x+y ﹣2=0.原点O 到直线l 的距离为;(Ⅱ)解:对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,即,也就是,设,即∀x ∈[1,+∞),g (x )≤0成立..①若m ≤0,∃x 使g ′(x )>0,g (x )≥g (1)=0,这与题设g (x )≤0矛盾; ②若m >0,方程﹣mx 2+x ﹣m=0的判别式△=1﹣4m 2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.21.【答案】【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,∵f(x)≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,∵∃x0∈R,使得,即成立,∴4m+m 2>[f (x )+f (x+5)]min ,即4m+m 2>5,解得m <﹣5,或m >1,∴实数m 的取值范围是(﹣∞,﹣5)∪(1,+∞).22.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,23.【答案】【解析】解:圆C:的标准方程为(x+1)2+(y﹣2)2=4由于圆心C(﹣1,2)到直线l:3x+4y﹣12=0的距离d==<2故直线与圆相交故他们的公共点有两个.【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.24.【答案】【解析】解:(1)p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0 ⇔(x ﹣3a )(x ﹣a )<0,∵a >0为,所以a <x <3a ;当a=1时,p :1<x <3;命题q :实数x 满足x 2﹣5x+6≤0⇔2≤x ≤3;若p ∧q 为真,则p 真且q 真,∴2≤x <3;故x 的取值范围是[2,3)(2)p 是q 的必要不充分条件,即由p 得不到q ,而由q 能得到p ;∴(a ,3a )⊃[2,3]⇔,1<a <2∴实数a 的取值范围是(1,2). 【点评】考查解一元二次不等式,p ∧q 的真假和p ,q 真假的关系,以及充分条件、必要条件、必要不充分条件的概念.属于基础题.25.【答案】【解析】(1)∵2cos cos cos a A c B b C =+, ∴2sin cos sin cos sin cos A A C B B C ⋅=+, ∴2sin cos sin()A A B C ⋅=+,∵A B C π++=,∴sin()sin B C A +=, ∴2sin cos sin A A A ⋅=. ∵0A π<<,∴sin 0A ≠, ∴2cos 1A =,∴1cos 2A =.(2)由1cos 2A =,得sin 2A =,由2sin aA =,得2sin a A ==. ∵2222cos a b c bc A =+-,∴222431bc b c a =+-=-=,∴11sin 22ABC S bc A ∆===26.【答案】【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,∴ω==2,又x=时,2×+φ=+2kπ,得φ=2kπ﹣,(k∈Z)又∵|φ|<,∴φ=﹣,∴f(x)=sin(2x﹣)…6分(Ⅱ)由f(A)=,可得sin(2A﹣)=,∵a<c,∴A为锐角,∴2A﹣∈(﹣,),∴2A﹣=,得A=,由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,∵c>0,∴解得c=4.∴△ABC的面积S=bcsinA==…12分【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.。
二〇一五级校际联考理科数学答案 2018.5一、选择题:DCDAA CBDDC BB 1.答案:D解析:2(1,3)230:Z Z x x x N x x ∈-⎧--<⎧⇒⎨⎨∈∈⎩⎩}2,1,0{=⇒N ,所以=N M }2,1{,故选D2.答案:C解析:i z --=22,所以21z z i i i ii 54535)2)(2(22+-=+--=---=,故选C3.答案:D解析:因为21l l ⊥,所以0cos 3sin =-αα,所以3tan =α,所以53tan 1tan 2cos sin cos sin 2cos sin 22sin 222=+=+==ααααααααα.故选D .4.答案:A解析:设圆的半径为r ,则圆的面积21πS r =,正六边形的面积2221π336sin 232S r r =⨯⨯⨯=,所以向圆中随机投掷一个点,该点落在正六边形内的概率222133332π2πrS P S r ===,故选A. 5.答案:A解析:双曲线22131x y m m -=-+的一条渐近线方程为230x y -=,可得 (3)(1)0m m -+>,解得(1,3)m ∈-,因为130+--=m x my 是双曲线的渐近线方程,所以1233m m +=-, 解得313m =,故选A. 6.答案C解析:由“p q ∧”是真命题,则p 为真命题,q 也为真命题,若p 为真命题,则不等式220x x a ++>恒成立,440∆=-<a ,∴1>a .若q 为真命题,即28a<,所以3a <.即()1,3a ∈.故选C.7.答案B解析:模拟执行程序框图,可得:2n =,0i =,8m =,满足条件8n ≤,满足条件()mod 8,20=,1i =,3n =,满足条件8n ≤,不满足条件()mod 830=,,4n =,满足条件8n ≤,满足条件()mod 8,40=,2i =,5n =,…,*8n∈N ,可得:2,4,8,∴共要循环3次,故3i =.故选B . 8.答案D解析:以B 为坐标原点,BC 为x 轴、BA 为y 轴建系,则)2,0(),0,32(A C ,1232:=+yx AC ,设4343]32,0[),,(22+-=⇒∈x x y x y x P ,所以2224103(,)(23,)23433PB PC x y x y x y x x x ⋅=--⋅--=+-=-+9[,4]4∈-,故选D. 9.答案:D解析:取m =1得,11n n a a a n +=++,即11n n a a n +-=+,从而11221()()+()=(1)+----+-+-+-+……2n n n n a a a a a a n n即1=(1)+n a a n n -+-+…2,求得(1)=2n n n a + 20181122214036=212232018201920192019==+++-⨯⨯⨯∑…(1)=i ia,故选D. 10.答案C .解析:因为A 昨天值夜班,所以今天不是星期一,也不是星期日若今天为星期二,则A 星期一值夜班, D 星期四值夜班,则星期二与星期三B C ,至少有一人值夜班,与B C ,至少连续4天不值夜班矛盾若今天为星期三,则A 星期二值夜班, D 星期四值夜班,则星期三与星期五B C ,至少有一人值夜班,与B C ,至少连续4天不值夜班矛盾若今天为星期五,则A 星期四值夜班,与D 星期四值夜班矛盾若今天为星期六,则A 星期五值夜班, D 星期四值夜班,则下星期一与星期二B C ,至少有一人值夜班,与B C ,至少连续4天不值夜班矛盾, 综上所述,今天是星期四,故选C. 11.答案B解析:设A(x ,y ),B(x ,y )1122且x ,y >110,易知)0,1(F ,设直线1:+=my x AB 由,0444122=--⇒⎩⎨⎧=+=my y x y my x 所以122144y y y y -=⇒-=21111312(0)42OPAB OPA OFA OFBy S S S S y y y ∆∆∆=++=++>22223222)443)(1(24322123)()0(22143)(x x x x x x x x x x f x x x x x f ++-=-+=-+='⇒>++=易知)(x f 在()1,0上为减函数,所以当11=y 时,min 13()4OPAB S =,故选B12. 答案B解析:几何体的直观图如图所示为三棱锥ABC O -, 三棱锥ABC O -中,︒=∠=∠90ABC AOC ,所以外接球的直径为AC ,则半径2221==AC R ,所以外接球的表面积π32π42==R S ,故选B. 二、填空题:13.答案:12 14.答案: 7 15.答案:180 16.答案:①②④ 13.答案:12解析: 由()()1,0,,2λ==a b ,则()()()()22,0,22,2,1,2λλλ-=-=--+=+a b a b ,所以()()22222222284,52λλλλλ-=-+-=-++=++a b a b ,又由2-=+a b a b ,所以228452λλλλ-+=++,解得12λ=,故答案为12.14.答案:7解析:由题⎪⎩⎪⎨⎧≤-≥-≥4201y x y x x ,画出可行域为如图ABC ∆区域,023≠-=y y x z 且,当P 在(1,2)A -处时,7max =z ,故答案为7.正视图侧视图俯视图15.答案:180 解析:()()()()1010101121x x x ⎡⎤+=--=-+-⎣⎦,()()100111x a a x +=+- ()()2102101...1a x a x +-++-, ()288102180a C ∴=⋅-=,故答案为180. 16.答案:①②④ 解析:①()()()21m x f x g x x x =-=-,31,02x ⎛⎫∈- ⎪⎝⎭,()'2120m x x x ∴=+>,()()()m x f x g x ∴=-,在31,02x ⎛⎫∈- ⎪⎝⎭内单调递增,故①正确;②,③设()(),f x g x 的隔离直线为y kx b =+,则21x kx bkx b x⎧≥+⎪⎨≤+⎪⎩对任意x ∈∞(-,0)恒成立, 即有22010x kx b kx bx ⎧-≥⎨+-≤-⎩对任意x ∈∞(-,0)恒成立.由 210kx bx +-≤对任意x ∈∞(-,0)恒成立得0k ≤.若=0k 则有=0b 符合题意;若<0k 则有20x kx b --≥对任意x ∈∞(-,0)恒成立,又21=00402k x k b <⇒∆≤⇒+≤对 0b ∴≤,则有'2=0,02b x k-≤∴∆≤对,240b k +≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,40k -≤<,同理421664b k b ≤≤-,可得40-≤<b ,所以40k -≤≤, 40b -≤≤,故②正确,③错误;④函数()f x 和()h x 的图象在e =x 处有公共点,因此存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线方程为()e e y k x -=-,即e e y kx k =-+,由()()e e 0≥-+>f x kx k x 恒成立,若0=k ,则()2e 00-≥>x x 不恒成立.若0<k ,由()2e e 00-+-≥>x kx k x 恒成立,令2()e e,>0=-+-u x x kx k x ,2()e e =-+-u x x kx k 在(0,e)∈x 单调递增,(e)e e e e =0=-+-u k k ,故0<k 不恒成立.所以0>k ,可得2e e 0x kx k -+-≥,当0>x 恒成立,''=02>对k x 则()232e0∆=-≤k ,只有2e k =,此时直线方程为2e e y x =-,下面证明()2e e h x x ≤-, 令()()2e e G x x h x =--2e e 2eln x x =--,()()2e ex G x x-'=,当e x =时,()0G x '=;当0x e <<时,()'0G x <;当x e >时,()'0G x >;当x e =时,()G x '取到极小值,极小值是0,也是最小值,()()2e e 0G x x h x ∴=--≥,则()2e e h x x ≤-,∴函数()f x 和()h x 存在唯一的隔离直线2e e y x =-,故④正确,故答案为①②④.三、解答题: 17.答案:(Ⅰ) 2π3A =(或120︒);(Ⅱ) 21a =. 解:(Ⅰ)由正弦定理得, 3sin cos 2sin sin A A C C+=∵sin 0C ≠∴3sin cos 2A A -= ,即πsin 16A ⎛⎫-= ⎪⎝⎭. …………………3分 ∵0πA <<∴ππ5π666A -<-<∴ππ62A -= ∴2π3A =. …………………6分(Ⅱ)由: 3ABC S ∆= 可得1sin 32S bc A ==.∴4bc = …………………9分 ∵5b c +=∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=∴21a = …………………12分18. 答案:(Ⅰ)见解析;(Ⅱ)33. (Ⅰ)证明:方法1:设AC 的中点为O ,连接BO ,PO .由题意得,2PA PB PC ===,1PO =,1AO BO CO ===, 因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥, …………………2分因为在POB ∆中,1PO =,1OB =,2PB =,所以PO OB ⊥, …………………4分因为ACOB O =,,AC OB ⊂平面ABC ,OPCA B所以PO ⊥平面ABC , 因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC . …………………6分(Ⅱ)解:由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则xOyz PCA B(0,0,0)O ,(1,0,0)C ,(0,1,0)B ,(1,0,0)A -,(0,0,1)P .由OB ⊥平面APC ,故平面APC 的法向量为(0,1,0)OB =,…………………8分 由(1,1,0)BC =-,(1,0,1)PC =-, 设平面PBC 的法向量为(,,)n x y z =,则由0,0,BC PC ⎧⋅=⎨⋅=⎩n n 得:0,0.x y x z -=⎧⎨-=⎩令1x =,得1y =,1z =,即(1,1,1)n =, …………………10分13cos ,3||||31n OB n OB n OB ⋅<>===⋅⋅. 由二面角A PC B --是锐二面角, 所以二面角A PC B --的余弦值为33. …………………12分 19.答案:(Ⅰ)0.8185 (Ⅱ)见解析.解:(Ⅰ)350.02450.15550.2650.25750.24850.1950.04EZ =⨯+⨯+⨯+⨯+⨯+⨯+⨯65=,故65μ=, …………………2分19814σ=≈∴(65146514)(5179)0.6826-<≤+=<≤=P Z P Z ,(6521465214)(3793)0.9544-⨯<≤+⨯=<≤=P Z P Z .∴(3793)(5179)(3751)0.13592<≤-<≤<≤==P Z P Z P Z综上,(3779)(3751)(5179)P Z P Z P Z <≤=<≤+<≤0.13590.68260.8185=+=. …………………5分(Ⅱ)易知()1()2P Z P Z μμ<=≥=获赠话费ξ的可能取值为20,40,60,80. …………………7分()13320248P ξ==⨯=; ()1113313402424432P ξ==⨯+⨯⨯=;()13111336024424416P ξ==⨯⨯+⨯⨯=;()11118024432P ξ==⨯⨯=. …………………9分ξ的分布列为: ξ 20 40 60 80P38 1332 316 132∴313312*********.58321632E ξ=⨯+⨯+⨯+⨯=. …………………12分 20.答案:(Ⅰ)椭圆C 的方程为2214x y +=,圆A 的方程为228(2)5x y -+=;(Ⅱ) 12+S S 为定值,定值为54π.解:(Ⅰ)如图,设T 为PQ 的中点,连接AT ,则AT ⊥PQ ,因为0AP AQ ⋅=,即AP ⊥AQ ,所以AT 12PQ =, 又3OP OQ =,所以OT PQ =,所以AT OT12=,所以12b a =. ………………………………2分 由已知得3c =,所以224,1=a b =∴椭圆C 的方程为2214x y +=, …………………………………… 4分222||||||,AT OT OA +=所以2244+=AT AT ,所以255=AT ,所以2105=r AP =, 所以圆A 的方程为228(2)5x y -+=. ……………………………… 6分 (Ⅱ)设直线l 的方程为(0)y kx m m =+≠,1122(,),(,),M x y N x y由22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩,得222(14)84(1)0k x kmx m +++-=, 所以212122284(1)1+41+4km m x x x x k k --+==,,由题设知212k k k =1212y y x x =1212()()kx m kx m x x ++=, 221212(),km x x m k x x ++=+ ………………8分22221228()0,01+4k m km x x m m k-∴++=+=, 210,4m k ≠∴=, ………………………………………………………………10分则12+S S 22()4=OM ON π+=22221122(+)4x y x y π++22221212=(+11)444x x x x π-++- 22123=(+)162x x ππ+212123=(+)2162x x x x ππ⎡⎤-+⎣⎦2222223648(1)16(1+4)1+42k m m k k ⎡⎤π-π=-+=⎢⎥⎣⎦22344(1)162m m ππ⎡⎤=--+=⎣⎦54π 故12+S S 为定值,该定值为54π. …………………………………………………………12 21.答案:(Ⅰ)(1) 当 0a ≤时,()F x 在()2,-+∞ 上单调递减; (2) 当0a >时,()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增. (Ⅱ)a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭.解:(I )定义域为{}|2,x x >-()()()11'e ln 2e e ln 222ax ax ax f x a x a x x x ⎛⎫=⋅++⋅=++ ⎪++⎝⎭ 故()()()1e 'ln 22axF x f x a x x -==+++ 则 ()()()22121'222a ax a F x x x x +-=-=+++ (1)若0a =,则()()'0,F x F x <在()2,-+∞ 上单调递减;…………………2分 (2)若0a ≠,令()1'02F x x a=⇒=-. ①当 0a <时,则122x a=-<-,因此在()2,-+∞ 上恒有 ()'0F x < ,即 ()F x 在()2,-+∞ 上单调递减;②当0a >时,122x a =->-,因而在12,2a ⎛⎫-- ⎪⎝⎭上有()'0F x <,在12,a ⎛⎫-+∞ ⎪⎝⎭上有()'0F x >;因此 ()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增.综上, (1) 当 0a ≤时,()F x 在()2,-+∞ 上单调递减; (2) 当0a >时, ()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增. …………………5分(Ⅱ)设 ()()()()1ln 21,1,axg x f x x e x x x =--=+--∈-+∞,()()()()1''1ln 2112ax axg x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭,设()()()'1ax h x g x e F x ==-,则 ()()()()()22241''ln 22axaxax a h x e aF x F x e a x x ⎛⎫+- ⎪⎡⎤=+=++⎣⎦ ⎪+⎝⎭. (1) 若=0a ,()()()()1ln 21,1,g x f x x x x x =--=+--∈-+∞()()'1110,1,22x g x x x x --=-=<∈-+∞++ ()g x 在()1,x ∈-+∞单调递减,()()10g x g <-=故此时函数()g x 无零点, =0a 不合题意. …………………7分 (2)若0a < ,①当0x ≥时,01ax e <≤,由(1)知()ln 21x x +<+对任意()1,x ∈-+∞恒成立()()()ln 211)1(1()10ax ax ax g x e x x e x x x e ∴=+--<+--=+-≤,故 ()0g x <,对任意[)0,x ∈+∞恒成立, ②当10x -<<时,()'1,10ag e -->-=()1'0ln202g a =-<, 因此当10x -<<时()'g x 必有零点,记第一个零点为0x ,当0(1,)x x ∈-时()'g x >,()g x 单调递增,()(1)0g x g >-=.由①②可知,当0a <时,()g x 必存在零点. …………………9分 (2)当102a <<,考察函数 ()'h x ,由于 ()()1222114'1e 210,'ln 20,22122a a h a h e a a a a -⎛⎫⎪⎛⎫⎛⎫ ⎪-=-<=++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎪⎝⎭⎝⎭ ()'h x ∴在 ()1,-+∞上必存在零点.设()'h x 在 ()1,-+∞的第一个零点为1x ,则当()11,x x ∈-时, ()'0h x <,故 ()h x 在 ()11,x -上为减函数,又 ()()e110ah x h -=-<-<,所以当()11,x x ∈-时, ()'0g x <,从而 ()g x 在()11,x x ∈-上单调递减,故当()11,x x ∈-时恒有 ()()10g x g <-=.即()10g x < ,令'()1,()(1)ax ax x e ax x a e ϕϕ=--=-,则()x ϕ在(1,0)x ∈-单调递减,在(0,)x ∈+∞单调递增.()(0)0x ϕϕ≥=即1,ax e ax ≥+注意到1axeax ax a ≥+>+,因此()()()()()ln 21(1)ln 21(1)ln 21axg x e x x a x x x x a x =+-->++--=++-,令10ax e =时,则有()11110(1)ln 21(1)ln 10aa a a g x e a e e a e ⎛⎫⎛⎫⎛⎫>++->+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由零点存在定理可知函数 ()y g x =在 11,ax e ⎛⎫ ⎪⎝⎭上有零点,符合题意.综上可知, a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭. …………………12分(Ⅱ)解法二:设()()()()1ln 21,1,axg x f x x e x x x =--=+--∈-+∞, ()()()()1''1ln 2112ax ax g x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭, (1) 若=0a ,()()()()1ln 21,1,g x f x x x x x =--=+--∈-+∞ ()()'1110,1,22x g x x x x --=-=<∈-+∞++ ()g x 在()1,x ∈-+∞单调递减,()()10g x g <-=故此时函数()g x 无零点, =0a 不合题意. …………………7分(2)若0a < ,当10x -<<时,()'1,10a g e -->-=()1'0ln202g a =-<, 因此当10x -<<时()'g x 必有零点,记第一个零点为0x , 当0(1,)x x ∈-时()'0g x >,()g x 单调递增,()0(1)0g x g >-=又 ()()001ln210,g f =-=-< 所以,当0a <时,()g x 在0(,0)x x ∈必存在零点. …………………9分 (3)当102a <<,由于 ()ln 2100g <-< , 令'()1,()(1)ax ax x e ax x a e ϕϕ=--=-,则()x ϕ在(1,0)x ∈-单调递减,在(0,)x ∈+∞单调递增.()(0)0x ϕϕ≥=即1,ax e ax ≥+注意到 1ax e ax ax a ≥+>+,因此()()()()()ln 21(1)ln 21(1)ln 21ax g x e x x a x x x x a x =+-->++--=++-, 令10a x e =时,则有()11110(1)ln 21(1)ln 10aa a a g x e a e e a e ⎛⎫⎛⎫⎛⎫>++->+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由零点存在定理可知函数 ()y g x =在()00,x 上存在零点,符合题意.综上可知,a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭. …………………12分 22.答案:(Ⅰ) 曲线C 的直角坐标方程为()()22134x y -+-=,直线l 的参数方程为12(332x t t y t ⎧=⎪⎪⎨⎪=-+⎪⎩为参数);(其他参数方程酌情给分)(Ⅱ)7.解:(Ⅰ)曲线:4cos 4cos cos 4sin sin 333C πππρθρθθ⎛⎫=-⇒=+ ⎪⎝⎭, 所以22cos 23sin ρρθρθ=+, 即22223x y x y +=+, …………………2分 得曲线C 的直角坐标方程为()()22134x y -+-=,直线l 的参数方程为12(332x t t y t ⎧=⎪⎪⎨⎪=-+⎪⎩为参数) . …………………5分 (Ⅱ)将12(332x t t y t ⎧=⎪⎪⎨⎪=-+⎪⎩为参数)代入圆的方程, 得2213123422t t ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭, …………………7分 整理得2790t t -+=, 得12127,9t t t t +== ,所以 120,0t t >> 所以127PA PB t t +=+=. …………………10分23.答案:(Ⅰ) 3=t ,此时),2[+∞∈x ;(Ⅱ)见解析.(Ⅰ)解:依题意得,当1x ≤-时,()1(2)3f x x x =----=-;当12x -<<时,()(1)(2)21f x x x x =+--=-,此时()(1,3)f x ∈-; 当2x ≥时,()(1)(2)3f x x x =++-=, ………………3分 所以()f x 的最大值为3,即3=t ,此时),2[+∞∈x .……………………5分 (Ⅱ)证明:由222a b t +=-,得,221a b +=, 所以2120a b =-≥,所以12b ≤, ……………………7分 所以412)2(2422222≥--=+-=+b b b b a .……………………10分。