2018考研数学必备知识点:线性方程组之解的判定
- 格式:doc
- 大小:241.73 KB
- 文档页数:3
3.1 线性方程组的解线性方程组的解。
线性方程组是数学中一个重要的概念,它在各个领域都有着广泛的应用。
在代数学中,线性方程组是一组由一元或多元的线性方程组成的方程组,它们之间的关系是线性的。
线性方程组的解是指能够满足所有方程的变量的取值,使得方程组成立。
在这篇文章中,我们将讨论线性方程组的解的性质和求解方法。
首先,我们来看一下线性方程组的一般形式。
一个包含n个未知数的线性方程组可以写成如下形式:a11x1 + a12x2 + ... + a1nxn = b1。
a21x1 + a22x2 + ... + a2nxn = b2。
...am1x1 + am2x2 + ... + amnxn = bm。
其中,aij和bi分别是常数,x1到xn是未知数。
这个方程组可以用矩阵表示为Ax=b,其中A是一个m×n的矩阵,x和b分别是n×1和m×1的向量。
线性方程组的解可以分为唯一解、无穷解和无解三种情况。
首先,如果线性方程组有且仅有一个解,我们称这个解为唯一解。
这意味着方程组中的每个方程都是相互独立的,且能够通过消元法得到唯一的解。
其次,如果线性方程组有无穷多个解,我们称这个解为无穷解。
这意味着方程组中的某些方程是相互依赖的,导致方程组有无穷多个解。
最后,如果线性方程组没有解,我们称这个解为无解。
这意味着方程组中的某些方程是矛盾的,导致方程组无法满足。
现在,我们来讨论线性方程组的求解方法。
对于一个包含n个未知数的线性方程组,我们可以使用消元法、矩阵法和克拉默法则等方法来求解。
消元法是一种基本的求解方法,它通过逐步消去未知数的系数,将方程组化简为最简形式,从而求得解。
矩阵法是一种更加高效的求解方法,它利用矩阵的性质和运算规则,将方程组表示为矩阵形式,并通过矩阵运算求得解。
克拉默法则是一种利用行列式的性质来求解线性方程组的方法,它通过计算方程组的系数矩阵的行列式和各个未知数的系数矩阵的行列式来求得解。
线性方程组解的判定
线性方程组解的判定是一个重要的数学问题,它涉及到对一组未知量的求解。
解的判定问题的主要内容如下:
1. 系数矩阵存在不等式:在求解线性方程组时,首先要判断系数矩阵是否存在不等式,即是否存在元素值为负的情况:若存在,则解不存在;如果全部元素值都不为负,则判定解存在。
2. 是否存在无穷解:通常情况下,一个线性方程组只有唯一解,即只有一组解。
但也有可能存在无穷多解,即系数矩阵存在元素值全为0,此时解可以是任意一组数,因此可以判定存在无穷解。
3. 闭解的确定:当系数矩阵存在不等式或存在元素值全为0时,可以判定存在无穷解;当系数矩阵存在唯一解时,需要通过计算、符号识别和几何意义的结合,来确定具体的闭解。
4. 压缩可行性:压缩可行性判定法是指将求解所求出来的解,压缩在基本解所构成的空间上,以便表达出更复杂的结果。
5. 方程式系数:也可以通过方程式系数的分析,来判定方程组的解的存在与否,这是一种常用的判定方法。
从上述内容可以看到,线性方程组解的判定是一个复杂的数学问题,要想判断线性方程组的解的存在性,需要结合不等式判定、无穷解判定、压缩可行性判定以及方程式系数等步骤,一步步进行判断,才能正确地确定某个线性方程组的解的存在性。
§ 4 线性方程组设是由m 个方程组成的 n 元线性方程组,它的系数矩阵、未知数列向量和常数列向量分别是A = X = β=于是线性方程组( 4-1 )可改为 AX= β。
记:= =称为 (4-1) 的增广矩阵。
如果β=0 ,那么,式 (4-1) 表示一个齐次线性方程组;否则 (4-1) 表示一个非齐次线性方程组。
定理4.1 如果线性方程组 AX= β有两个不同的解,那么它一定有无穷多解。
线性方程组( 4-1 )的解只有三种可能:无解,唯一解,无穷多解。
下面介绍解线性方程组的一个规范方法 --- 高斯消去法,它是加减消元法和代入消元法的推广和规范化。
定义4.1 设是两个由m 个方程组成的 n元线性方程组,如果的解都是的解, 的解都是的解,即线性方程组有相同的解,那么称它们为同解方程组,或称这两个方程组同解。
定理4.2 如果线性方程组的增广矩阵A= 经过有限次行初等变换变成矩阵,作为增广矩阵对应于线性方程组那么,线性方程组是同解方程组。
用高斯消去法解线性方程组 4-1 ,实际上就是对增广矩阵进行矩阵的行初等变换,先把变为阶梯形矩阵,再继续施行行初等变换,使其变为简化阶梯形矩阵。
前者就是消元过程,后者就是回代过程。
定理4.3 设线性方程组 4-1 的增广矩阵 A 经过行初等变换变为阶梯形矩阵 4-4 。
1 当d ≠ 0 时,线性方程组 4-1 无解;2 当d =0 且r =n 时,线性方程组 4-1 只有唯一解;3 当d =0 且r <n 时,线性方程组 4-1 有无穷多解。
(4-4)对于齐次线性方程组(4-5)由于总是它的一个解(通常称为零解),所以齐次线性方程组的解总是存在的。
问题是它会不会有非零解,从而有无穷多解。
推论4.4 如果齐次线性方程组( 4-5 )的系数矩阵 A 的阶梯形中非零行的数目 r 小于未知数的数目 n ,那么它一定有非零解。
推论4.5 如果齐次线性方程组( 4-5 )的方程数目 m 小于未知数的数目n ,那么它一定有非零解。
第二节 线性方程组解的情况判定教学目的:掌握线性方程组解的存在性的判别方法。
教学重点:线性方程组有解判别定理及其推论。
教学过程:下面我们来说明如何利用初等变换来解一般的线性方程组。
第一步 对于方程组(9.1),如果1x 的系数不全为零,那么利用初等变换1,可以设110a ≠;第二步 利用初等变换2,分别把第一个方程的111i a a -倍加到第i 个方程(2,,)i s = ,于是方程组(9.1)变成111122112222222n n n n s sn n s a x a x a x b a x a x b a x a x b +++=⎧⎪'''++=⎪⎨⎪⎪'''++=⎩(9.2) 其中1111(2,,;2,,)i ij ij j a a a a i s j n a '=-⋅== 。
这样,解方程组(9.1)就归结为解方程组2222222n n s sn n s a x a x b a x a x b ⎧'''++=⎪⎪⎨⎪'''++=⎪⎩ (9.3)方程组(9.1)有解的充分必要条件为方程组(9.3)有解;第三步 对(9.2)上面的类似变换,最后得到一个阶梯形方程组111122*********100000r r n n r r n n rr r rn n r r c x c x c x c x d c x c x c x d c x c x d d ++++++=⎧⎪+++=⎪⎪⎪++=⎪⎨=⎪⎪=⎪⎪⎪=⎩(9.4) 其中0(1,2,,)ii c i r ≠= 。
方程组(9.4)中的“00=”这样一些恒等式可能不出现,也可能出现,去掉它们不影响(9.4)的解。
方程组(9.1)与方程组(9.4)是同解的。
下面讨论方程组(9.4)解的情况,即方程组(9.1)解的情况。
1.如(9.4)中有方程10r d +=,而10r d +≠,这是不管1,,n x x 取什么值都不能使它成为等式,所以(9.4)无解,从而(9.1)无解。
线性方程组知识点线性方程组是数学中重要的概念,它在各个领域都有广泛的应用。
本文将讨论线性方程组的定义、解的存在唯一性、解的表示形式及相关概念。
同时,还将介绍解线性方程组的常见方法。
一、线性方程组的定义线性方程组是由多个线性方程组成的方程集合。
一般地,一个线性方程组可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,x₁, x₂, ..., xₙ为未知数,a₁₁, a₁₂, ..., aₙₙ为已知系数,b₁, b₂, ..., bₙ为常数项。
二、解的存在唯一性线性方程组的解要求每个方程都被满足。
当线性方程组的未知数个数大于方程个数(即方程组行数小于列数)时,可能存在无穷多组解;当未知数个数小于方程个数(即方程组行数大于列数)时,可能无解。
对于未知数个数等于方程个数的情况,即方程组的系数矩阵的秩等于方程组的行数,解的存在唯一。
此时,方程组的解可以通过高斯消元法或克拉默法则来求解。
三、解的表示形式线性方程组的解可以分为唯一解、无穷解和无解三种情况。
1. 唯一解:在方程组的解是唯一的情况下,解的表示形式可以写为一个向量,其中向量的每个分量对应一个未知数的值。
2. 无穷解:在方程组的解不唯一但存在无穷个解的情况下,解的表示形式可以写为一个参数形式的向量,其中向量的每个分量都包含了一个参数,通过参数的取值可以得到方程组的不同解。
3. 无解:在方程组的解不存在的情况下,方程组被称为矛盾方程组。
四、解线性方程组的常见方法解线性方程组的常见方法包括高斯消元法、克拉默法则和矩阵法。
1. 高斯消元法:将线性方程组表示为增广矩阵,通过初等行变换将增广矩阵化为行简化阶梯形矩阵,进而求解出方程组的解。
2. 克拉默法则:通过计算方程组的系数矩阵的行列式及其部分行列式,从而求解出每个未知数的值。
线性⽅程组解的判别与解的结构⼀.线性⽅程组求解定理1.线性⽅程组有解判别定理线性⽅程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 , ......................................................as1 x1 + as2 x2 + … + asn x n = bs有解的充分必要条件是 : 它的系数矩阵与增⼴矩阵有相同的秩 .2. 齐次线性⽅程组a11 x1 + a12 x2 + … + a1n x n = 0,a21 x1 + a22 x2 + … + a2n x n = 0, ......................................................as1 x1 + as2 x2 + … + asn x n = 0有⾮零解的充分必要条件是: 它的系数矩阵的秩r ⼩于未知量个数n .齐次线性⽅程组求解⼀般步骤: 1.把系数矩阵通过初等变换,变换成阶梯形矩阵. 2.判断阶梯形矩阵中⾮零⾏的个数秩(r),以及计算⾃由元个数m=n-r. 3.确定⾃由元位置,然后以次为它们赋值1,0... 4.求解出⽅程组的基础解系. 5.⽤基础解系表⽰出⽅程全解.⾮齐次线性⽅程组求解,与齐次线性⽅程组求解过程基本⼀致,只需要再求出⼀个特解。
⼆.如何⽤C语⾔计算线性⽅程组的解 那么如何⽤算法求出线性⽅程组的解呢? 就是根据上⾯⽅程组求解⼀般步骤来的, 1.矩阵的初等变换(在上次⾏列式计算的基础上,这个很好实现). 2.求出矩阵的秩/⾃由元个数,然后确定⾃由元的位置(我认为这是⼀个难点) 3.初始化⾃由元(1,0,..),计算变量,最终求出基础解系 4.⾮齐次线性⽅程 4.1.先求出齐次线性⽅程组的基础解系 4.2.再利⽤上⾯步骤求⼀个特解即可1.矩阵的初等变换//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){{if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}2.计算矩阵的秩//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}3.确定⾃由元位置 ⾃由元确定需要考虑两种情况: 1).系数梯形矩阵最后⼀⾏只有⼀个⾮零元素. 2) 系数梯形矩阵中某⾏的个数等于⾃由元的个数.//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc) {int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m){o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}求解⽰例图:1> p148-例42> 2.7(1)-13> 2.7(2)-1.14> 2.7(2)-1.25> 2.7(2)-1.36> 2.7(3)-1.17> 2.7(3)-1.28> 2.7(3)-1.39> 2.7(3)-1.410> p155-例6以下是C语⾔求解的全部源代码#include <stdio.h>#include <stdlib.h>double undefined=-999;//标志位void main(){int i,j,s,n;int res;double **array,*temp,**result;//tempdouble t1[6]={1,1,1,1,1,0};double t2[6]={3,2,1,0,-3,0};double t3[6]={0,1,2,3,6,0};double t4[6]={5,4,3,2,6,0};int homogeneous=1;//标识⽅程是否是齐次⽅程void primaryRowChange(int s, int n, double **array);void printfDouble1Dimension(int n, double *array);void printfDouble2Dimension(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result); int nonHomegeneousResolve(int s, int n, double **array, double **result,double *special); //void printfInt2Dimension(int s, int n, int ** array);//int* getPrimary(int n,double *temp);//输⼊说明printf("输⼊说明:⾏数代表S个线性⽅程,N代表未知数及常数项.\n");printf("例如⽅程如下:\n");printf("1x-2y+3z=4\n");printf("-2x-4y+5z=10\n");printf("如下输⼊2⾏,4列:\n");printf("1 -2 3 4\n");printf("-2 -4 5 10\n\n");//开始printf("输⼊⾏数:");scanf("%d",&s);printf("输⼊列数:");scanf("%d",&n);//s=4;//n=6;//动态分配内存空间array =(double**)malloc(s*sizeof(double*));result =(double**)malloc(s*sizeof(double*));special =(double*)malloc(n*sizeof(double));for(i=0;i<s;i++){temp=(double*)malloc(n*sizeof(double));printf("请输⼊第%d⾏数组:",i+1);for(j=0;j<n;j++)scanf("%lf",temp+j);/*switch(i){case 0:temp=t1;//{1,1,1,1,1,0};break;case 1:temp=t2;//{3,2,1,0,-3,0};break;case 2:temp=t3;//{0,1,2,3,6,0};break;case 3:temp=t4;//{5,4,3,2,6,0};break;}*/array[i]=temp;}//打印数组printf("初等⾏列变换之前:\n");printfDouble2Dimension(s,n,array);//判断⽅程是否是齐次⽅程for(i=0;i<s;i++){if(*(*(array+i)+n-1)!=0)//如果最后⼀列,有不为0的说明⽅程为⾮齐次⽅程{homogeneous=0;break;}}primaryRowChange(s,n,array);printf("初等⾏列变换之后:\n");printfDouble2Dimension(s,n,array);if(homogeneous)//齐次{switch (res){case -1:printf("⽅程⽆解.\n");break;case0:printf("⽅程只有零解.\n");break;default:printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);break;}}else//⾮齐次{res=nonHomegeneousResolve(s,n,array,result,special);if(res==-1)printf("⽅程⽆解.\n");else{printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);printf("⽅程的特解如下:\n");printfDouble1Dimension(n-1,special);}}system("pause");}//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){flag=0;for(k=i+1;k<s;k++){if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}//⾮齐次⽅程解的情况int nonHomegeneousResolve(int s, int n, double **array, double **result, double *special) {int i,j,k,l;int r1,r2;//系数矩阵/增⼴矩阵的秩int getRank(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result);r1=getRank(s,n-1,array);r2=getRank(s,n,array);if(r1!=r2)return -1;//⽆解//特解temp =(double**)malloc(r1*sizeof(double*));homogeneousResolve(r1,n,0,array,temp);for(i=0;i<n;i++)*(special+i)=*(*(temp)+i);return homogeneousResolve(r1,n,1,array,result);}//齐次⽅程解的情况int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result){int i,j,k,l,o,p,flag;int r;//秩rankint m;//⾃由元个数int f;//最后⼀个⾮零⾏⾸元的位置double sum1=0,sum2=0;double *temp = (double*)malloc(n*sizeof(double));//临时⾏指针int **matrixPrimary;//存储矩阵⾸元位置及⾮零元个数double **matrixCalc;//计算基础解系int *freeElement;//⾃由元位置double **matrixTemp;//声明函数void printfDouble2Dimension(int s, int n, double **array);void printfInt2Dimension(int s, int n, int **array);int** getPrimary(int s, int n, double **array);int getRank(int s, int n, double **array);double** initMatrixCalc(int s, int n);int* getFreeElement(int r, int n,double **array, int **matrixPrimary, double **matrixCalc);void printfInt1Dimension(int n, int *array);void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result); //秩rankr = getRank(s,n,array);//判断解的情况m=n-1-r;if(m<0)return -1;//⽆解else if(m==0)return0;//只有零解else{//初始化计算矩阵matrixCalc = initMatrixCalc(r,n);//获取矩阵⾸元信息matrixPrimary = getPrimary(r,n,array);/*printf("打印计算矩阵:\n");printfDouble2Dimension(r,n,matrixCalc);printf("打印矩阵⾸元信息:\n");printfInt2Dimension(r,2,matrixPrimary);*/freeElement = getFreeElement(r, n, array, matrixPrimary,matrixCalc);//打印⾃由元位置//printf("打印⾃由元位置:\n");//printfInt1Dimension(m, freeElement);//计算基础解系getPrimarySolution(r, n, homogeneous, array, matrixPrimary, matrixCalc, freeElement ,result);//printfDouble2Dimension(m,n,result);return m;}}//init Matrix calcdouble** initMatrixCalc(int s, int n){int i,j;double **array=(double**)malloc(s*sizeof(double*));for(i=0;i<s;i++){array[i] =(double*)malloc(n*sizeof(double));*(*(array+i)+n-1)=1;{*(*(array+i)+j)=undefined;}}return array;}//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}//查找某⾏⾮零个数及⾸元位置int** getPrimary(int s, int n, double **array){int i,j;int num=0,index=0;int **result=(int**)malloc(s*sizeof(int*));int *temp;for(i=0;i<s;i++){temp =(int*)malloc(2*sizeof(int));num=0;index=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0){if(num==0)index=j;num+=1;}}temp[0]=index;temp[1]=num;result[i]=temp;}return result;}//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc){int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位for(i=r-1;i>=0;i--)//查找⾃由元,及位置为0的{if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m)o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}//计算基础解系void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result) {int i,j,k,l,p;int m=n-1-r;//⾃由元double sum1,sum2;double *temp,**matrixTemp;//计算基础解系for(i=0;i<m;i++){matrixTemp=(double**)malloc(r*sizeof(double*));//复制数组for(j=0;j<r;j++){temp =(double*)malloc(n*sizeof(double));for(k=0;k<n;k++)*(temp+k)=*(*(matrixCalc+j)+k);matrixTemp[j]=temp;}//设置⾃由元为0或1for(j=0;j<r;j++){*(*(matrixTemp+j)+freeElement[i])=1;//⾃由元为1for(k=0;k<m;k++){if(k!=i)*(*(matrixTemp+j)+freeElement[k])=0;//⾃由元为0}}//printfDouble2Dimension(r,n,matrixTemp);//计算for(j=r-1;j>=0;j--){p=*(*(matrixPrimary+j));//当前⾏起始位置for(k=p;k<n;k++){if(*(*(matrixTemp+j)+k)==undefined)//如果等于标志位,它可能是未知变量{sum1=sum2=0;for(l=p;l<n;l++){if(l==n-1){sum1=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}else if(l!=k){sum2+=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}}for(l=0;l<r;l++)*(*(matrixTemp+l)+k)=((homogeneous?0:sum1)-sum2)/ *(*(array+j)+k);//如果齐次sum1=0;//break;}}}result[i]=matrixTemp[0];//printfDouble2Dimension(r,n,matrixTemp);}}void printfDouble2Dimension(int s, int n, double **array) {//printf("%d,%d",s,n);int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%6.2lf",*(*(array+i)+j));}printf("\n");}}void printfDouble1Dimension(int n, double *array){int i;for(i=0;i<n;i++){printf("%6.2lf",*(array+i));}printf("\n");}//打印⼆维数组void printfInt2Dimension(int s, int n, int **array){int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%4d",*(*(array+i)+j));}printf("\n");}}//打印⼀维数组void printfInt1Dimension(int n, int *array){int i;for(i=0;i<n;i++){printf("%4d",*(array+i));}printf("\n");}View Code。