零件加工程序单
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
第一章数控加工的编程基础课后习题答案一、填空题1、为了准确地判断数控机床的运动方向,特规定永远假设刀具相对于(静止的工件)坐标而运动。
2、目前,数控编程所采用的格式为(字-地址)程序段格式。
3、用于编写程序段的字为(N)4、尺寸字U、V、W表示增量(相对)坐标,A、B、C表示(旋转)坐标。
5、数控系统通常分为车削和铣削两种,用于车削的数控系统在系列号后加字母(T)用于铣削的数控系统在系列号后加字母(M)二、选择题1、下列叙述中,(确定机床坐标系),不属于数控编程的基本步骤。
A)分析图样、确定加工工艺过程B)数值计算C)编写零件加工程序单D)确定机床坐标系2、程序校验与首件试切的作用是(检验程序是否正确及零件的加工精度是否满足图纸要求)。
(A)检查机床是否正常(B)提高加工质量(C)检验参数是否正确(D)检验程序是否正确及零件的加工精度是否满足图纸要求3、数控编程时,应首先设定(工件坐标系)。
(A)机床原点(B)工件坐标系(C)机床坐标系(D)固定参考点三、判断题1、数控加工的主程序号都是由O××××构成,而子程序由P××××构成。
(×)2、M功能不能编程变化量(如尺寸、进给速度、主轴转速等),只能控制开关量(如冷却液开、关,主轴正、反转,程序结束等)。
(√)3、国际标准化组织ISO规定,任何数控机床的指令代码必须严格遵守统一格式。
(×)4、大部分代码都是非续效(模态)代码。
(×)四、简答题1、编制数控加工程序的主要步骤?答:①对零件图加工工艺分析②数值计算(数学处理)③编写零件加工程序单④制备控制介质⑤程序校对与首件试切2、数控编程有哪些种类?分别适合什么场合?答:数控编程一般分为手工编程和自动编程两种。
①手工编程。
对于加工形状简单、计算量小、程序不多的零件,采用手工编程较容易,而且经济、及时。
编程训练一、简单编程题目例如 如图所示的外圆切槽加工,其加工程序如下:例如:如图所示,圆柱螺纹加工,螺纹的螺距为 1.5mm ,车削螺纹前工件直径φ42mm ,第一次进给背吃刀量0.3mm ,第二次进给背吃刀量0.2mm ,第三次进给背吃刀量0.10mm ,第四次进给背吃刀量0.08mm ,采用绝对值编程。
基点坐标 :A(26,0) B(28,-1) C(28,-20) D(32,-20) E(42,-35) F(42,-50) G(45,-50)根据加工要求选用刀具:2号为外圆左偏精车刀。
切削用量表二、在GSK980-TD 数控车床上,加工如图所示零件,试编制精车加工程序。
U /2X三、在 FANUC O-TD数控车床上加工如图所示零件,试编制其加工程序。
已知条件:毛坯为φ60×95的棒料,材料为45钢。
从右端至左端轴向走刀切削;粗加工每次进给深度2.0mm,进给量为0.25mm/r;精加工余量X向0.4mm,Z向0.1mm;切槽刀刃宽4mm。
加工路线为:(1)粗车外圆。
从右至左切削外轮廓,采用粗车循环。
(2) 精车外圆。
右端倒角→φ20mm外圆→倒角→φ30mm外圆→倒角→φ40mm外圆。
(3)切断。
根据加工要求选用3把刀具:1号为外圆左偏粗车刀,2号为外圆左偏精车刀,3号为外圆切断刀。
答:设工件右端面为编程坐标原点。
(毛坯为锻件,余该零件的加工程序如下:程序说明答:该零件的加工程序如下:程序说明O0002;程序号G50 X100. Z50.;M03 S1000;T0100;N1;工序(一)外圆粗切削G00 G99 X44.0 Z1.0;G71 U2. R1.;外圆粗车循环点G71 P10 Q11 U1. W0.1 F0.15;X向精加工余量为0.5mm,Z向精加工余量0.1mm N10 G0 X0;工件轮廓程序起始序号(N10),刀具以G0速度至X0 G01 Z0 F0.1 ;进刀至Z0X20.0 K-1.0;切削端面,倒角1×45ºZ-20.0;切削φ20外圆,长20mmX30.0 K-1.0;切削端面,倒角1×45ºZ-50.0;切削φ30外圆,长50mmX40 K-1.0;切削端面,倒角1×45ºZ-84.0;切削φ40外圆,长84mmN11 G01 X43.0;工件轮廓程序结束序号(N11)G00 X100. Z50. T0100;X轴、Z轴回换刀点T0202;M03 S500;N2;工序(二)外圆精车G00 X44.0 Z1.0;外圆精车循环点G70 P10 Q11;精车外圆指令,执行N10至N11程序段G00 X100. Z50. T0200;刀具回换刀点T0303;M03 S300;N3;工序(三)切断G0 X42.0 Z-84.0;切断刀循环点G01 X-1.;切断G04 X2;G01 X45. F0.1;G00 X100. Z50. T0300;X轴、Z轴回换刀点M30;程序结束四、在FANUC O-TD数控车床上加工如图所示零件,试编制其加工程序。
四、名词解释:1. 绝对坐标系:所有坐标点的坐标值均从某一固定原点计量的坐标系2.机床坐标系原点: 也称为机床零点或机床原点,是由机床厂家在设计时确定的。
3. 参考坐标系: 参考点是机床上的一个固定点。
该点是刀具退离到一个固定不变的极限点,以参考点为原点坐标方向与机床坐标方向相同建立的坐标系叫参考坐标系。
4.线切割加工中的切削速度: 是指在保持一定的表面粗糙度的切割过程中,单位时间内电极丝中心在工件上切过的面积总和。
5.走刀路线: 刀具在整个加工工序中相对于工件的运动轨迹,他不但包括了公步的内容,而且反映了公步的顺序。
6.数控机床的伺服系统: 是数控系统的执行部件,它包括电动机、速度控制单元、测量反馈单元、位置控制等部分。
7.工件原点偏置: 在加工时,工件装夹到机床上,通过对刀求得工件原点与机床原点间的距离。
8.工序分散: 将工件的加工分散在较多的工序内进行,每道工序的加工内容很少。
9.固定循环指令:为简化编程机床数控装置具备的不同形式的可进行多次重复切削循环的功能。
10.机床原点: 机床上一个固定不变的极限点。
11.编程坐标系(工件坐标系): 工件坐标系是编程人员为编程方便,在工件、工装夹具上或其他地方选定某一已知点为原点建立的一个编程坐标系。
12.基准统一原则: 同一个零件的多道工序尽可能选用同一个定位基准,称为基准统一原则。
13.程序段格式:零件的加工程序由程序段组成。
程序段的格式是指一个程序段中字、字符等。
14. 工艺基准:加工及装配过程中使用的基准15. ISO代码:以国际标准化组织的原则为标准建立的代码称为ISO 代码。
ISO是International Organization for Standards的英语简称。
16.加工路线:加工路线是指数控机床加工过程中,刀具相对零件的运动轨迹和方向。
17. 增量坐标:刀具或机床的坐标体相对于前一个坐标位置给出时称增量坐标。
刀具或机床的坐标体相对于固定的坐标原点给出时称绝对坐标。
数控铣床典型零件加工实例集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)模块五 数控铣床典型零件加工实例本单元从综合数控技术的实际应用出发,列举了典型数控铣削编程实例,如果希望掌握这门技术,就应该仔细的理解和消化它,相信有着举一反三的效果。
一、数控铣床加工实例1——槽类零件 毛坯为70㎜×70㎜×18㎜板材,六面已粗加工过,要求数控铣出如图2-179所示的槽,工件材料为45钢。
图2-179 凹槽工件1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线1)以已加工过的底面为定位基准,用通用机用平口虎钳夹紧工件前后两侧面,虎钳固定于铣床工作台上。
2)工步顺序① 铣刀先走两个圆轨迹,再用左刀具半径补偿加工50㎜×50㎜四角倒圆的正方形。
② 每次切深为2㎜,分二次加工完。
2.选择机床设备根据零件图样要求,选用经济型数控铣床即可达到要求。
3.选择刀具现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。
4.确定切削用量切削用量的具体数值应根据机床性能、相关的手册并结合实际经验确定,详见加工程序。
5.确定工件坐标系和对刀点在XOY 平面内确定以工件中心为工件原点,Z 方向以工件上表面为工件原点,建立工件坐标系,如图2-118所示。
采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O 作为对刀点。
学习目标知识目标: ●学会对工艺知识、编程知识、操作知识的综合运用 能力目标: ●能够对适合铣削的典型零件进行工艺分析、程序编制、实际加工。
6.编写程序考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完。
为编程方便,同时减少指令条数,可采用子程序。
该工件的加工程序如下:O0001; 主程序N0010 G90 G00 Z2. S800 T01 M03;N0020 X15.Y0 M08;N0030 G01 Z-2. F80;N0040 M98 P0010; 调一次子程序,槽深为2㎜N0050 G01 Z-4.F80;N0060 M98 P0010; 再调一次子程序,槽深为4mmN0070 G00 Z2.N0080 G00 X0 Y0 Z150. M09;N0090M02 主程序结束O0010 子程序N0010G03 X15. Y0 I-15.J0;N0020 G01 X20.;N0030 G03 X20. YO I-20. J0;N0040 G41 G01 X25. Y15.;左刀补铣四角倒圆的正方形N0050 G03 X15. Y25. I-10. J0;N0060G01 X-15.;N0070 G03 X-25. Y15. I0 J-10.;N0080G01 Y-15.N0090 G03 X-15. Y-25. I10. J0;N0100 G01 X15.;N0110 G03 X25. Y-15. I0 J10.;N0120 G01 Y0;N0130 G40 G01 X15. Y0; 左刀补取消N0140 M99; 子程序结束7.程序的输入(参见模块四具体操作步骤)8.试运行(参见模块四具体操作步骤)9.对刀(参见模块四具体操作步骤)10.加工选择“自动方式”,按“启动”开始加工。
FANUC 0TD1. 加工程序清单O002N010M3N015S1500T0101N020G96S150N025G00X65.Z0.T0101N030G01X-1.6F0.5N035G00X65.Z3.N040G71U2.R0.5N045G71P50Q115U0.4W0.2F0.4 N050G00X10.N055G01Z0.N060X18.N065Z-2.X20.N070Z-15.N075Z-30.X26.N080G03Z-35.X36.K-5.I0.N085G01Z-45.X36.N090Z-55.X45.N095Z-70.N100X56.N105Z-72.X60.N110Z-75.N115X61.N120G00Z30.N125X150.Z150.T0100N130G00X65.Z30.T0202N135G70P50Q115N140G00X150.Z150.T0200N145M05N150M022. 三维加工视窗3. 二维加工轨迹线FANUC 0MD1. 加工程序清单%N0001G40G49G80N0002G21N0003G91G28Z0.G28X0.Y0.G90G92X450Y250Z260. N0005M06T01N0006G00X0.Y0.Z150. N0007M3S800N0008M08N0009X10.Y10.N0010Z100N0011G01X20.F100N0012G42Y20.D1N0013Z50N0014X115.N0015X120.Y40.N0016X115.N0017G02X85.R15.N0018X57.268Y49.378R20. N0019X57.Y50.624R3.03N0020G01Y65.N0021G03X47.R5.N0022G01Y50.N0023G02X25.R11.N0024G01X20.N0025Y20.N0026Z50N0027G40N0028X10.N0029Y10.N0030G00X10.Y10.N0031Z150.N0032M05N0033M30%2. 三维加工视窗3. 加工轨迹线FANUC 0i T1. 加工程序清单N1T0101N2M03S400N3G00X6Z3G72W1.2R1G72P5Q15X-0.2Z0.5F100 N5G00x0z0G01x66Z-10X46Z-20Z-30G03U-8W-4R4G01X30Z-44N15X0N16G00Z80N17X100N18M05N19M302. 三维加工视窗3. 二维加工轨迹线FANUC 0iM1. 加工程序清单N10 G40 G49 G80 G17 M06 T01 N20 G54 G90 G0 X-80 Y-80 Z0 N40 M03 S800N50 M08N60 G99 G83 Z-30 R1 Q2 F200 N70 G91 X40 K4N80 Y80N90 G91 X-40 K4N100 Y80N110 X40 K4N120 G80 G90 G0 Z50N130 M05 M09N140 G91 G28 Z0 Y0N150 M22. 加工轨迹线3. 三维加工视窗FANUC 18iT 1. 零件图2. 加工程序清单N10T0101N20M03S100N30G01X75.Z0.F100.M8N50G71U2.R0.5N60G71P70Q140U0.4W0.2F0.4N70G0X20.Z0.N80G01X30.Z-5.Z-34.N90G02X38.Z-38.R4.N100G01Z-51.N110X50.N120G01Z-70.N130G01X60.N140G01Z-90.N150G00X100.Z100.T0100N160T0202N170G70P70Q140N180G0Z200T0200N181T0303N182G0X27.Z2.N182G76P051060Q100200N183G76X27.Z-34.P1083Q300F1.5 N184G0X150.Z200.T0300N185T0404N186G0X0Z5.N187G01Z-60.N188G01Z5.N194G0X150.Z200. N195M053. 二维加工轨迹线4. 三维加工视窗FANUC 18iM1.加工程序清单N01G54X0Y0Z100.0N02G90G00X-35.0Y35.0S800M03 N03Z-15.0M08N04G41G01X-10.0Y35.0D01F100 N05X0N06G02X30.668Y16.867R35.0N07G02X31.15Y15.603R5.0N08G02X25.502Y-17.628R43.65 N09G02X25.396Y-17.777R5.0N10G02X-25.396Y-17.777R31.0 N11G02X-25.502Y-17.628R5.0N12G02X-31.15Y15.603R43.65N13G02X-30.668Y16.867R5.0N14G02X0Y35.0R35.0N15G01X10.0N16G40G00X35.0Y35.0M09N17Z100.0N18X0Y0M05M19M303.三维加工视窗SIEMENS 801M03S100T01D01G00X100Z50R100=80R101=0R102=100R103=-100 R104=2R105=1R106=0.5R109=5R110=35R111=15R112=0R113=8R114=1LCYC97M05M22.二维加工轨迹线3.三维加工视窗SIEMENS 802ST 1.零件图2.加工程序清单主程序:T1D1M03S800G0X50Z2_CNAME="L42"R105=1 R106=0.3 R108=2 R109=7R110=1.5 R111=0.4 R112=0.25LCYC95R105=5 R106=0LCYC95G0X200Z200T1D0T2D1G0X40Z-43R100=38 R101=-45 R102=38 R103=-60 R104=1.5 R105=1 R106=0.2 R109=2R110=3 R111=0.975 R112=0 R113=4 R114=1LCYC97G0X100Z100T2D0M05M02L42.spfG1X0Z0G3X20.8Z-25.8K-15I0G2X31.6Z-39.5CR=8G1Z-45X35X38Z-46.5Z-58.5X35Z-60Z-65X39X42Z-66.5Z-75M023.二维加工轨迹线4.三维加工视窗SIEMENS 802SM1.加工程序清单主程序G54X0Y0Z10F100M03S100 R10=-15 R11=-9.06L1R10=15 R11=-9.06L1R10=0L2子程序:L1.SPFG0 X=R10+12.5-4 Y=R11G1 Z-6 F100G3 I=4-12.5G1 X=R10+8 Y=R11G41 D1 X=R10+4 Y=R11G2 I-4G0 Z5R1=4R2=90AAA:R3=R1*COS(R2)+4+R10R4=R1*SIN(R2)-R1G0 X=R3 Y=R11G1 Z=R4 F300G2 I=R10-R3G0 Z1R2=R2-1IF R2>=0 GOTOB AAAG0 Z10M17L2.SPFR1=35R2=15R3=0G0 X=R1+R10 Y=R11G1 Z-5 F100AAA:R4=R1*COS(R3)+R10R5=R2*SIN(R3)+R11G1 X=R4 Y=R5 F100R3=R3+1IF R3<=360 GOTOB AAA G0 Z5M172.加工轨迹线3.三维加工视窗SIEMENS 802DT1.零件图2.加工程序清单主程序:T1D1M03S800G0X0Z2CYCLE95("L18",1.5,0.3,0.3,0.2,0.2,0.2,0.2,9,0,0,1)G0X100Z100T1D0T2D1G0X32Z-30.5G1X27G0X100Z100T2D0T3D1G0X28Z-14CYCLE97(1.5,3,-16,-27.5,30,30,2,2,1.35,0.1,0,0,3,2,3,1) G0X100Z100T3D0M05M02L18.spfG1X0Z0F0.2G03X20Z-10CR=10G1Z-16X27X30Z-17.5Z-30.5X40Z-35.5G02Z-50CR=20G1X50Z-58Z-70RET3.二维加工轨迹线4.三维加工图形SIEMENS 802DM 1.程序加工清单M03S1000M06 T1D1N110 G17 G0 G90 G94 F2000G54 X0 Y0 Z20CYCLE71( 10, 0, 2,-11, 0, 0, 100, 100, 0, 6, 3, 5, 0, 4000, 11, 2) N125 G0 G90 X0 Y0N130 M302.加工轨迹线3. 三维加工视窗SIEMENS 810/840DT1.加工程序清单G94 G90 M03 S1000 F100 T01D01G00 X65 Z5CYCLE95 ("AA1", 1.000, 0.000, 0.000, 0.100, 100.000, 50.000, 80.000, 1, 0.000, 0.000, 1.000)S2000AA1G00 X100 Z100M30子程序AA1.spfG00 X47.349 Z2G01 Z0G03 X60 Z-35 CR=100X28.793 Z-71.289 CR=50G02 X13.73 Z-85.767 CR=25X16.905 Z-117.157 CR=80X32.134 Z-124.482 CR=10G01 X46.832 Z-126.044G03 X50 Z-128 CR=2G01 Z-131X61RET2.二维加工轨迹线3.三维加工视窗SIEMENS 810/840DM 1.程序加工清单M3S1000T01D01G0X0Y0Z20SLOT2 (10, 0, 5, -10, 10, 4, 40, 15, 0, 0, 25, 60, 0, 100, 100, 3, 3, 0.5, 2, 3)M5M302.生成加工的轨迹线3.三维加工视窗显示HNC21T1.零件图2.加工程序清单%0001M03S1000T0101G00X54Z1G01X54F0.2G71U1R1P1Q2E0.3 N1G01X10F0.1X19.95Z-2Z-33G01X30Z-43G03X42Z-49R6G01Z-53X36Z-65Z-73G02X40Z-75R2G01X44X46Z-76Z-84G02Z-113R25G03X52Z-122R15 G01Z-133N2G01X54G00X100Z50M5M23.生成二维轨迹线4.三维加工视窗HNC21M1.程序清单主程序:%0068N10 G54 X0 Y0 Z50N15 G90 G17 M03 S600N20 G43 Z-5 H02N25 M98 P200N30 G68 X0 Y0 P45N40 M98 P200N60 G68 X0 Y0 P90N70 M98 P200N20 G49 Z50N80 G69 M05 M30%200N100 G41 G01 X20 Y-5 D02 F300 N105 Y0N110 G02 X40 I10N120 X30 I-5N130 G03 X20 I-5N140 G00 Y-6N145 G40 X0 Y0 N150 M992.加工轨迹3.三维加工视窗。
零件加工的步骤怎么做_零件加工的步骤有哪些零件加工的,这中间要走什么样一个流程或者是步骤,那么你对关于零件加工的步骤到底要怎么做有兴趣吗?下面就由店铺为你带来零件加工的步骤怎么做分析,希望你喜欢。
零件加工的步骤怎么做以下面做例子:一、加工要求加工如下图所示零件。
零件材料为 LY12 ,单件生产。
零件毛坯已加工到尺寸。
选用设备: V-80 加工中心二、准备工作加工以前完成相关准备工作,包括工艺分析及工艺路线设计、刀具及夹具的选择、程序编制等。
三、操作步骤及内容1、开机,各坐标轴手动回机床原点2、刀具准备根据加工要求选择Φ20 立铣刀、Φ5中心钻、Φ8麻花钻各一把,然后用弹簧夹头刀柄装夹Φ20立铣刀,刀具号设为T01,用钻夹头刀柄装夹Φ5中心钻、Φ8麻花钻,刀具号设为T02、T03,将对刀工具寻边器装在弹簧夹头刀柄上,刀具号设为 T04 。
3 、将已装夹好刀具的刀柄采用手动方式放入刀库,即1 )输入“T01 M06” ,执行2 )手动将 T01 刀具装上主轴3 )按照以上步骤依次将 T02 、 T03 、 T04 放入刀库4、清洁工作台,安装夹具和工件将平口虎钳清理干净装在干净的工作台上,通过百分表找正、找平虎钳,再将工件装正在虎钳上。
5、对刀,确定并输入工件坐标系参数1 )用寻边器对刀,确定 X 、 Y 向的零偏值,将 X 、 Y 向的零偏值输入到工件坐标系 G54 中, G54 中的 Z 向零偏值输为 0 ;2 )将 Z 轴设定器安放在工件的上表面上,从刀库中调出 1 号刀具装上主轴,用这把刀具确定工件坐标系 Z向零偏值,将 Z 向零偏值输入到机床对应的长度补偿代码中,“+” 、“-” 号由程序中的 G43 、G44 来确定,如程序中长度补偿指令为 G43 ,则输入“-” 的 Z 向零偏值到机床对应的长度补偿代码中;3 )以同样的步骤将 2 号、 3 号刀具的 Z 向零偏值输入到机床对应的长度补偿代码中。
手工编程1.定义手工编程是指编程的各个阶段均由人工完成。
利用一般的计算工具,通过各种数学方法,人工进行刀具轨迹的运算,并进行指令编制。
这种方式比较简单,很容易掌握,适应性较大。
适用于中等复杂程度程序、计算量不大的零件编程,对机床操作人员来讲必须掌握。
2. 编程步骤人工完成零件加工的数控工艺分析零件图纸制定工艺决策确定加工路线选择工艺参数计算刀位轨迹坐标数据编写数控加工程序单验证程序手工编程3. 优点主要用于点位加工(如钻、铰孔)或几何形状简单(如平面、方形槽)零件的加工,计算量小,程序段数有限,编程直观易于实现的情况等。
4. 缺点对于具有空间自由曲面、复杂型腔的零件,刀具轨迹数据计算相当繁琐,工作量大,极易出错,且很难校对,有些甚至根本无法完成。
自动编程(图形交互式)1. 定义对于几何形状复杂的零件需借助计算机使用规定的数控语言编写零件源程序,经过处理后生成加工程序,称为自动编程。
随着数控技术的发展,先进的数控系统不仅向用户编程提供了一般的准备功能和辅助功能,而且为编程提供了扩展数控功能的手段。
FANUC6M数控系统的参数编程,应用灵活,形式自由,具备计算机高级语言的表达式、逻辑运算及类似的程序流程,使加工程序简练易懂,实现普通编程难以实现的功能。
数控编程同计算机编程一样也有自己的"语言",但有一点不同的是,现在电脑发展到了以微软的Windows为绝对优势占领全球市场.数控机床就不同了,它还没发展到那种相互通用的程度,也就是说,它们在硬件上的差距造就了它们的数控系统一时还不能达到相互兼容.所以,当我要对一个毛坯进行加工时,首先要以我们已经拥有的数控机床采用的是什么型号的系统.2. 常用自动编程软件(1)UGUnigraphics 是美国Unigraphics Solution公司开发的一套集CAD、CAM、CAE 功能于一体的三维参数化软件,是当今最先进的计算机辅助设计、分析和制造的高端软件,用于航空、航天、汽车、轮船、通用机械和电子等工业领域。
2013 届毕业设计 系 别:信息与工程系专业名称: 数 控 技 术 姓 名:学 号: 20100204012 班 级: 10 数 控 技 术 指导教师:2012 年 12 月 20 日MinBei Vocational And Technical College数控车轴类零件工艺设计及程序编制摘要随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。
并在加工过程掌握控制精度的方法,才能加工出合格的产品。
本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。
通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。
关键词:轴类零件,工艺分析,数控编程,数控加工目录一引言 (1)二轴类零件加工工艺分析 (2)(一)典型轴类零件的加工工艺 (2)(二)数控车床的概述 (3)(三)分析加工对象 (6)(四)夹具和刀具的选择 (7)三零件工艺过程卡设计 (8)(一)数控加工步骤、工艺特点及内容 (8)(二)加工工序的划分 (9)(三)编制工艺过程卡 (10)(四)切削用量的确定 (10)(五)编制加工工序卡 (11)四数控车削编程及仿真 (12)(一)刀具加工进给路线的确定 (12)(二)本零件加工所用刀具 (13)(三)编程基础 (14)(四)斯沃数控仿真 (21)结束语 (31)参考文献 (32)致谢 (33)附录 (34)数控车轴类零件工艺设计及程序编制李汪洋一、引言为了在激烈的巿场竞争中立于不败之地,各工业发达国家均投入了大量的资金,对现代制造技术进行研究开发,并提出了各式各样全新的制造模式。
数控车床零件图(15)加工及工艺分析作者:李沂摘要:当前数控技术的发展速度很快,作为一个机加工行业的人来说做好一份设计是非常重要的。
根据零件图纸的要求,从材料的选择,刀具的选用,装夹方案的确定,加工路线的设计,数值的计算,加工参数的设定,程序的编写,仿真加工,最后加工出符合零件图纸尺寸要求和形状要求的产品。
关键字:数控 , 加工 ,工艺分析 , 刀具一、课程设计的目的课程设计是在学完本专业所设的相关课程,并进行生产实习的基础上检查学生所学的基础理论知识与实际生产经验相结合的能力。
它要求学生较全面地综合运用本专业及其有关课程的理论和实践知识,进行相应科目的课程设计。
本课程设计是数控加工工艺与编程课程设计,具体设计内容为:根据给定工件图纸,编写加工工艺规程,并说明工艺装备仪器和各项参数的计算和选取方法。
其设计目的在于:1、培养学生运用机械制造工艺学与所涉及的有关课程(机械制造基础与实践、机械设计基础、互换性与检测技术、机械制图、AutoCAD、数控机床等)的知识,结合生产实习中掌握的实践技能,独立地分析和解决工艺问题,编写工艺规程的能力。
2、培养学生熟悉并运用有关手册、规范、图表等技术资料的能力。
3、进一步巩固和加深学生识图、计算机绘图、参数计算、数控编程和编写技术文件等基本技能。
二、数控机床故障诊断与维修随着电子技术和自动化技术的发展,数控技术的应用越来越广泛。
以微处理器为基础,以大规模集成电路为标志的数控设备,已在我国批量生产、大量引进和推广应用,它们给机械制造业的发展创造了条件,并带来很大的效益。
但同时,由于它们的先进性、复杂性和智能化高的特点,在维修理论、技术和手段上都发生了飞跃的变化。
数控维修技术不仅是保障正常运行的前提,对数控技术的发展和完善也起到了巨大的推动作用,因此,目前它已经成为一门专门的学科。
另外任何一台数控设备都是一种过程控制设备,这就要求它在实时控制的每一时刻都准确无误地工作。
数控车加工程序编制式中:X、Z- -圆柱面切削的终点坐标值;U、W--圆柱面切削的终点相对于循环起点坐标分量。
例:应用圆柱面切削循环功能加工图3.29所示零件。
N10 G50 X200 Z200 T0101N20 M03 S1000N30 G00 X55 Z4 M08N40 G01 G96 Z2 F2.5 S150N50 G90 X45 Z-25 F0.2N60 X40N70 X35N80 G00 X200 Z200N90 M30(2)圆锥面切削循环编程格式G90 X(U)~ Z(W)~ I~ F~式中:X、Z- 圆锥面切削的终点坐标值;U、W-圆柱面切削的终点相对于循环起点的坐标;I- 圆锥面切削的起点相对于终点的半径差。
如果切削起点的X向坐标小于终点的X向坐标,I值为负,反之为正。
如图3.30所示。
例:应用圆锥面切削循环功能加工图3.30所示零件。
……G01 X65 Z2G90 X60 Z-35 I-5 F0.2X50G00 X100 Z200……2、端面切削循环端面切削循环是一种单一固定循环。
适用于端面切削加工,如图3.31所示。
(1)平面端面切削循环编程格式G94 X(U)~ Z(W)~ F~式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标。
例:应用端面切削循环功能加工图3.31所示零件。
……G00 X85 Z5G94 X30 Z-5 F0.2Z-10Z-15……(2)锥面端面切削循环编程格式 G94 X(U)~ Z(W)~ K~ F~式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标;K- 端面切削的起点相对于终点在Z轴方向的坐标分量。
当起点Z向坐标小于终点Z向坐标时K为负,反之为正。
如图3.32所示。
例:应用端面切削循环功能加工图3.33所示零件。
……G94 X20 Z0 K-5 F0.2Z-5Z-10……3.2.9复合固定循环在复合固定循环中,对零件的轮廓定义之后,即可完成从粗加工到精加工的全过程,使程序得到进一步简化。
数控车床加工编程典型实例[1]数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。
随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。
数控车床是目前使用最广泛的数控机床之一。
本文就数控车床零件加工中的程序编制问题进行探讨。
一、编程方法二、编程步骤拿到一张零件图纸后,首先应对零件图纸分析,确定加工工艺过程,也即确定零件的加工方法(如采用的工夹具、装夹定位方法等),加工路线(如进给路线、对刀点、换刀点等)及工艺参数(如进给速度、主轴转速、切削速度和切削深度等)。
其次应进行数值计算。
绝大部分数控系统都带有刀补功能,只需计算轮廓相邻几何元素的交点(或切点)的坐标值,得出各几何元素的起点终点和圆弧的圆心坐标值即可。
最后,根据计算出的刀具运动轨迹坐标值和已确定的加工参数及辅助动作,结合数控系统规定使用的坐标指令代码和程序段格式,逐段编写零件加工程序单,并输入CNC装置的存储器中。
三、典型实例分析数控车床主要是加工回转体零件,典型的加工表面不外乎外圆柱、外圆锥、螺纹、圆弧面、切槽等。
例如,要加工形状如图所示的零件,采用手工编程方法比较合适。
由于不同的数控系统其编程指令代码有所不同,因此应根据设备类型进行编程。
以西门子802S数控系统为例,应进行如下操作。
(1)确定加工路线按先主后次,先精后粗的加工原则确定加工路线,采用固定循环指令对外轮廓进行粗加工,再精加工,然后车退刀槽,最后加工螺纹。
(2)装夹方法和对刀点的选择采用三爪自定心卡盘自定心夹紧,对刀点选在工件的右端面与回转轴线的交点。
(3)选择刀具根据加工要求,选用四把刀,1号为粗加工外圆车刀,2号为精加工外圆车刀,3号为切槽刀,4号为车螺纹刀。
采用试切法对刀,对刀的同时把端面加工出来。
(4)确定切削用量车外圆,粗车主轴转速为500r/min,进给速度为0.3mm/r,精车主轴转速为800r/min,进给速度为0.08mm/r,切槽和车螺纹时,主轴转速为300r/min,进给速度为0.1mm/r。