调节变量和中介变量
- 格式:ppt
- 大小:439.50 KB
- 文档页数:40
调节变量与中介变量
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
一般人总是搞混两个之间的含义,因此造成统计数据的误差。
调节变量的定义
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱.
例如,学生的学习效果和指导方案的关系,往往受到学生个性的影响:一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。
又如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
中介变量的定义
考虑自变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现———上司对下属表现的归因———上司对下
属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与自变量和因变量的相关都不大。
有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。
对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。
如何用SPSS做中介效应与调节效应(转)如何用SPSS做中介效应与调节效应1、调节变量的定义变量Y与变量X的关系受到第三个变量M的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e。
Y与X的关系由回归系数a + cM来刻画,它是M的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM+e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
实验研究中的调节变量和中介变量在科学实验中,为了深入探究某个现象或问题,研究者需要许多不同的变量。
其中,调节变量和中介变量是两种关键的变量类型,对于理解实验结果具有重要意义。
本文将详细阐述调节变量和中介变量的概念,以及它们在实验研究中的作用。
调节变量是指那些能够影响实验结果的其他因素。
在实验中,如果研究者想要探究某个自变量(独立变量)对因变量(依赖变量)的影响,但这种影响会受到其他因素的影响,那么这些其他因素就可能成为调节变量。
例如,在探究温度对物质溶解度的影响时,温度是自变量,物质溶解度是因变量,但溶解度还可能受到压力、湿度等其他因素的影响,这些因素就可能成为调节变量。
中介变量则是位于自变量和因变量之间的变量。
在实验中,如果一个自变量对因变量的影响要经过一个或多个其他变量的中介作用,那么这些中介变量就可能影响实验结果。
例如,在探究教育程度对收入的影响时,教育程度是自变量,收入是因变量,但教育程度对收入的影响可能要经过工作技能、工作经验等中介变量的作用。
在实验设计与实施中,调节变量和中介变量的识别和控制至关重要。
对于调节变量,研究者需要在实验设计中考虑到这些因素,并尽可能消除或控制它们对实验结果的影响。
对于中介变量,研究者需要通过适当的测量和统计分析来识别它们对实验结果的影响。
实验结果和讨论部分,研究者需要报告各个实验组的结果,并对结果进行比较和分析。
在讨论中,研究者需要探讨调节变量和中介变量对实验结果的影响及其原因。
例如,在上述探究教育程度对收入的影响的实验中,如果工作经验这个中介变量的影响显著,那么研究者就需要进一步探讨工作经验是如何影响教育程度对收入的影响的。
在总结部分,研究者需要概括实验研究的结果,并说明这些结果对实践的指导意义。
例如,如果研究发现工作经验这个中介变量对教育程度对收入的影响具有显著影响,那么这就意味着在实际工作中,教育程度相同的人,拥有更多工作经验的人可能获得更高的收入。
有中介的调节变量和有调节的中介变量一、本文概述在社会科学和心理学研究中,变量之间的关系常常是复杂而多元的。
中介变量和调节变量是理解这种复杂关系的重要工具。
然而,当这两者同时存在时,它们之间的互动和影响就变得更加复杂。
本文将深入探讨有中介的调节变量和有调节的中介变量这两种特殊情况,旨在帮助读者更好地理解和应用这些概念。
我们将概述中介变量和调节变量的基本概念和作用。
中介变量通常用于解释自变量和因变量之间的内在机制,它揭示了一个过程或路径,通过这个过程,自变量的变化影响了因变量。
而调节变量则用于描述一个变量如何影响自变量和因变量之间的关系强度或方向,它揭示了在何种条件下,这种关系会发生变化。
接下来,我们将详细讨论有中介的调节变量。
这种情况指的是,调节变量不仅直接影响自变量和因变量之间的关系,而且还通过中介变量间接影响这种关系。
我们将通过具体案例和数学模型来解释这种复杂的相互作用,并讨论如何识别和分析这种关系。
我们还将探讨有调节的中介变量。
在这种情况下,中介变量的作用受到调节变量的影响。
这意味着,在不同的调节变量水平下,中介变量可能发挥不同的作用,从而影响自变量和因变量之间的关系。
我们将探讨这种关系的特点和识别方法,并通过实例进行说明。
我们将总结这两种特殊情况在理论和实践中的应用。
通过本文的阐述,读者将能够更好地理解和分析复杂变量之间的关系,从而在研究中做出更准确的推断和更有力的解释。
二、有中介的调节变量在统计分析中,中介变量和调节变量各自扮演着不同的角色,然而在某些复杂的情况下,它们可能会共同出现,形成“有中介的调节变量”这一概念。
这意味着一个变量既在自变量和因变量之间起中介作用,又受到另一个调节变量的影响。
理解这一概念对于深入研究变量间的关系,揭示现象背后的复杂机制具有重要意义。
有中介的调节变量模型通常涉及四个主要变量:自变量()、调节变量(M)、中介变量(W)和因变量(Y)。
在这个模型中,自变量通过中介变量W影响因变量Y,同时调节变量M也影响中介变量W。
调节变量与中介变量的比较
调节变量是衡量行为变化或影响任意因素的变量,即称为“因变量”。
直接影响调节变量的变量叫做自变量。
调节变量用于衡量自变量所带来的变化,它对研究者有重要的信息提供,可以是数量的变化,也可以是人的情绪改变。
中介变量是一种被认为用于某些变量之间的行为之间的直接关系的变量。
它们通常在心理学研究中被称为“间接变量”,也可以称为中间变量或模糊变量。
中间变量“不显示任何直接或直接关系”,但它们能解释一个变量如何影响另一个变量。
例如,担心可以作为一个变量,它会改变另一个变量,即行为,从而说明担心是行为的中介因素。
最重要的区别在于,调节变量没有必要与其他变量之间存在直接的关系,而中间变量有必要存在两个变量之间的直接关系。
另外,中介变量不应直接影响调节变量,而且仅受自变量的影响。
此外,调节变量可以是一个变量,而中间变量更多地是一组变量。
调节变量可以提供解释影响行为和改变的背景,以及这些变量之间的关系。
而中介变量主要用于识别被解释变量之间的直接关系。
例如,一项研究可能会探讨性别与收入之间的关系,中介变量可以帮助识别,为什么性别会影响收入水平。
此外,中介变量还可以解释自变量是如何影响被解释变量的,以及自变量如何影响多个被解释变量的。
总的来说,调节变量是用来衡量行为变化或影响一个变量的变量,而中介变量是旨在发现两个变量之间的直接关系的变量。
对于研究人员来说,正确理解这些变量和它们之间关系的重要性是必不可少的,以识别研究中的影响及其过程。
实验研究中的调节变量和中介变量张 莉1,W a n F a n g 2,林与川1,Q i u P i n g p i n g31哈尔滨工业大学管理学院,哈尔滨1500012U n i v e r s i t yo f M a n i t o b a ,M a n i t o b aR 3T 5V 43D e p a r t m e n t o f M a r k e t i n g ,M o n a s hU n i v e r s i t y ,M e l b o u r n e 3145摘要:调节变量和中介变量是社会科学研究中的重要概念,已有研究多是从统计计算方法角度描述和检验这两种变量的作用。
以消费心理学领域的实例来阐述调节变量、中介变量、有中介的调节、有调节的中介,试图让读者从实验研究角度认识和理解调节变量和中介变量的理论构建、测量和检验。
关键词:调节变量;中介变量;有中介的调节;有调节的中介中图分类号:G 312文献标识码:A文章编号:1672-0334(2011)01-0108-09 收稿日期:2010-10-27 修返日期:2011-01-05 作者简介:张莉(1973-),女,四川成都人,毕业于哈尔滨工业大学,获博士学位,现为哈尔滨工业大学管理学院教授,研究方向:组织行为与人力资源、领导力、工作家庭平衡等。
E -m a i l :z h a n g l i h i t @126.c o m1引言调节变量和中介变量是挖掘复杂因果关系所引入的重要变量。
在消费心理学领域,实验研究中的基本路径是,①确认自变量(X )与因变量(Y )的总效应(t o t a l e f f e c t );②甄别总效应何时发挥作用,也就是找到一个重要的调节变量(m o d e r a t o r );③挖掘总效应为何作用、如何作用,也就是找到一个重要的中介变量(m e d i a t o r )。
路径看似简单,但实验研究最大的挑战是如何对调节变量和中介变量进行理论构造和实验控制。
调节变量,中介变量和控制变量啥区别与联系?看看“机制分析, 中介渠道, 调节效应必读系列合集”, 写文章可以写得有些深度。
机制分析能够帮你回答Why?知其然,知其所以然,往往能够增加文章分析深度。
但是清晰理解Mediator, Moderator, Covariates这些概念以及逻辑,是开展机制分析的前提条件。
如果对图论比较感兴趣,还建议看看“用"因果关系图"来进行因果推断的新技能”。
1控制变量 Covariate可以看看“什么是不好的控制变量, 什么又是好的控制变量?”控制变量:这些会影响因变量的因素是研究者不愿意看到的,它们的存在会干扰研究者分析自变量对因变量的影响。
控制变量又称为“额外变量”,是必须被想办法施加控制或采用统计方法排除干扰的因素。
如果感觉上面那段话太抽象,我下面说个具体的例子解释一下。
就像昨天那出戏,我们想知道年轻人生活地点的差异会不会影响结婚年龄,但千人千面,漂亮的讨人喜欢,丑了自然在婚恋市场上行情堪忧。
因此将长相列为控制变量,就是排除这各因素的影响,让我们能够聚焦于地点差异对结婚年龄的影响。
科学研究中,我们通常不可能保证控制变量全部相同,而是采取统计方法排除其对因变量的影响。
然而在现实生活中,我们很难做到这种“统计排除”。
所以,理解控制变量实际上就是让我们分析因果(自变量影响因变量)关系时,留意是否有需要控制的因素没有被控制,如果没有控制,那我们就有理由怀疑这种因果关系。
值得强调的是,并不是除了自变量外所有能影响因变量都是控制变量,中介变量和调节变量都能影响因变量。
因此控制变量是一个相对的概念,主要看我们的研究目的或要弄清的问题。
比如讲生活地点对结婚年龄的影响,就要控制长相因素,如果我们研究长相对结婚年龄的影响,那长相就是自变量了。
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
相对于人们关注的自变量和因变量而言,调节变量和中介变量都是第三者,经常被人混淆。