区分中介与调节变量
- 格式:docx
- 大小:14.46 KB
- 文档页数:1
中介变量、调节变量与协变量概念、统计检验及其比较一、本文概述在社会科学和自然科学的研究中,变量之间的关系是复杂且多样的。
中介变量、调节变量和协变量是理解和分析这些复杂关系的重要概念。
本文旨在深入探讨这三种变量的概念、统计检验方法及其在实证研究中的应用,并对它们进行比较,以帮助读者更好地理解并应用这些变量在各自的研究中。
我们将详细定义中介变量、调节变量和协变量的概念,解释它们在研究中的作用和重要性。
然后,我们将介绍如何通过统计方法检验这些变量,包括常用的回归分析、路径分析、协方差分析等技术。
我们将重点关注这些统计检验方法的原理、步骤和适用条件,以便读者能够在实际研究中正确应用。
我们还将对中介变量、调节变量和协变量进行比较,分析它们之间的异同点,以及在研究中的优势和局限性。
这将有助于读者更好地理解这三种变量在实证研究中的适用场景,以及如何在具体研究中选择合适的变量和方法。
我们将通过一些实证研究案例来演示中介变量、调节变量和协变量的应用,以便读者能够更直观地理解这些概念和方法在实际研究中的应用。
通过本文的阅读,读者将能够更深入地理解中介变量、调节变量和协变量的概念、统计检验方法及其在实证研究中的应用,为未来的研究提供有益的参考和指导。
二、中介变量概念及统计检验中介变量,又称为中介效应,是一个在自变量和因变量之间起桥梁作用的变量。
它的存在意味着自变量对因变量的影响并非直接,而是通过中介变量这一“中介”来实现的。
在理解这个概念时,我们可以将自变量视为“原因”,因变量视为“结果”,而中介变量则是这一因果关系链条中的“过程”或“机制”。
统计检验方面,常用的中介效应检验方法包括Baron和Kenny(1986)提出的逐步回归法,以及Sobel检验和Bootstrap方法等。
逐步回归法要求先检验自变量对中介变量的影响(第一步),再检验中介变量对因变量的影响(第二步),最后检验在控制中介变量后,自变量对因变量的直接影响是否显著减弱或消失(第三步)。
调节变量与中介变量
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
一般人总是搞混两个之间的含义,因此造成统计数据的误差。
调节变量的定义
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱.
例如,学生的学习效果和指导方案的关系,往往受到学生个性的影响:一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。
又如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
中介变量的定义
考虑自变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现———上司对下属表现的归因———上司对下
属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与自变量和因变量的相关都不大。
有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。
对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。
调节变量(Moderator) vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
调节变量和中介变量模型举例
1.有调节变量的模型
调节变量影响自变量和因变量之间的关系,即可以对关系方向的影响,也可能是对关系强度的影响.如银行存款数与一个人每个月开销数是存在关系的,但对男士和女士的影响是不同的,这里的性别就是一个调节变量。
2。
有中介变量的模型
中介变量可以解释变量之间为什么会存在关系以及这个关系如何发生的。
比如变革型领导通过影响领导成员交换关系从而影响员工工作绩效和组织公民行为。
3.有调节变量的中介模型
在很多的模型中,可能既有中介变量又有调节变量,如良好的校园氛围会影响一个人的学业成就,但是校园氛围是通过学校依恋这一中介变量对学业成就进行影响,在这个过程中,学生自控能力的差别会影响这种关系,所以学生自控能力是这个模型里的调节变量.。
实验研究中的调节变量和中介变量在科学实验中,为了深入探究某个现象或问题,研究者需要许多不同的变量。
其中,调节变量和中介变量是两种关键的变量类型,对于理解实验结果具有重要意义。
本文将详细阐述调节变量和中介变量的概念,以及它们在实验研究中的作用。
调节变量是指那些能够影响实验结果的其他因素。
在实验中,如果研究者想要探究某个自变量(独立变量)对因变量(依赖变量)的影响,但这种影响会受到其他因素的影响,那么这些其他因素就可能成为调节变量。
例如,在探究温度对物质溶解度的影响时,温度是自变量,物质溶解度是因变量,但溶解度还可能受到压力、湿度等其他因素的影响,这些因素就可能成为调节变量。
中介变量则是位于自变量和因变量之间的变量。
在实验中,如果一个自变量对因变量的影响要经过一个或多个其他变量的中介作用,那么这些中介变量就可能影响实验结果。
例如,在探究教育程度对收入的影响时,教育程度是自变量,收入是因变量,但教育程度对收入的影响可能要经过工作技能、工作经验等中介变量的作用。
在实验设计与实施中,调节变量和中介变量的识别和控制至关重要。
对于调节变量,研究者需要在实验设计中考虑到这些因素,并尽可能消除或控制它们对实验结果的影响。
对于中介变量,研究者需要通过适当的测量和统计分析来识别它们对实验结果的影响。
实验结果和讨论部分,研究者需要报告各个实验组的结果,并对结果进行比较和分析。
在讨论中,研究者需要探讨调节变量和中介变量对实验结果的影响及其原因。
例如,在上述探究教育程度对收入的影响的实验中,如果工作经验这个中介变量的影响显著,那么研究者就需要进一步探讨工作经验是如何影响教育程度对收入的影响的。
在总结部分,研究者需要概括实验研究的结果,并说明这些结果对实践的指导意义。
例如,如果研究发现工作经验这个中介变量对教育程度对收入的影响具有显著影响,那么这就意味着在实际工作中,教育程度相同的人,拥有更多工作经验的人可能获得更高的收入。
Baron 和Kenny (1986)认为实验中是否存在中介作用应满足以下四个条件: (1) 自变量与中介变量之间有显著相关; (2) 中介变量与因变量之间有显著相关; (3) 自变量与因变量之间有显著相关; (4)当中介变量引入回归方程后,自变量与因变量的相关或回归系数显著降低。
如果自变量与因变量的关系下降至零,是完全中介(full mediation) ;如果自变量与因变量的相关降低但不等于零,是部分中介(partial mediation) 。
在这种情况下就可以证明预测变量对结果变量的影响是通过中介变量来进行的。
中介变量是自变量对因变量产生影响的途径或机制,如果X通过影响M来影响Y,则M就是中介变量。
模型可表达为Y=cX+e_1, M=aX+e_2, Y=c'X+bM+e_3。
调节变量影响因变量和自变量之间关系的方向和强弱。
用模型表达为Y=bM+(a+cM)X+e,c衡量了调节效应的大小。
调节效应与交互效应从统计分析的角度看是一样的。
但在交互效应中,两个自变量的位置是对称的,也可以是不对称的;在调节效应中,自变量和调节变量的位置不能互换。
在X对Y的影响时强时弱或方向不定时,应该研究调节变量,目的是弄清X何时影响Y 或何时影响较大。
在X对Y的影响较强且稳定时,应该研究中介变量,目的是弄清X影响Y 的机制。
中介变量和X、Y的相关都显著,调节变量则不一定,而且理想的调节变量与自变量、因变量的相关都不显著。
不受自变量影响的变量不可能成为中介变量,但可以成为调节变量。