调节变量与中介变量
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
有中介的调节变量和有调节的中介变量有中介的调节变量(Mediated Moderator )有中介的调节效应的检验程序:1)、做Y 对X 、U 和UX 的回归,UX 的系数显著;(这一步说明U 对Y 与X 关系的调节效应显著。
)2)、做W 对X 、U 和UX 的回归,UX 的系数显著;3)、做Y 对X 、U 、UX 和W 的回归,W 的系数显著。
如果在第3)步中,UX 的系数不显著,则U 的调节效应完全通过中介变量W 而起作用。
有调节的中介变量(Mod erated Mediator)有中介的调节效应的检验程序:1)、做Y 对X 和U 的回归,X 的系数显著;2)、做W 对X 和U 的回归,X 的系数显著;3)、做Y 对X 、U 和W 的回归,W 的系数显著;(到此为止说明W 的中介效应显著。
)4)、做Y 对X 、U 、W 和UW 的回归,UW 的系数显著。
从上面分析步骤可知,检验有调节的中介效应时,先要检验中介效应,然后检验调节效应。
混合模型(Mixed Model )1)、U 的直接调节效应显著,即UX →Y 的系数显著;2)、W 的中介效应显著,即X →W ,W →Y 的系数显著;3)、由UX →W 的系数显著和W →Y 的系数显著,可知U 是有中介的调节变量,即除了直接调节效应外,U 通过W 还对Y 有间接调节效应。
4)、由UX →Y 的系数显著,U 是X →W 的调节变量,再由UW →Y 的系数显著,U 是W →Y的调节变量,从而X →W 和W →Y 的中介过程受到U 的影响,所以从这个角度看W 是有调节的中介变量。
Notes :在通常的调节模型中,Y 对X 的回归系数是调节变量U 的线性函数,而在混合模型中,调节不是通常的线性调节,而是二次调节,即Y 对X 的回归系数是调节变量U 的二次函数。
当U 在一定区域内,X 对Y 的效应不显著。
(可通过方程推导该区域)。
Moderator and MediatorModerator and Mediator调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
相对于⼈们关注的⾃变量和因变量⽽⾔,调节变量和中介变量都是第三者,经常被⼈混淆。
这些内容在社会⼼理科学的研究中应⽤⽐较多。
通过这篇⽂章我还是对调节变量和中间变量有了⼀定的了解。
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和⾃变量之间关系的⽅向(正或负)和强弱. 例如,学⽣的学习效果和指导⽅案的关系,往往受到学⽣个性的影响:⼀种指导⽅案对某类学⽣很有效,对另⼀类学⽣却没有效,从⽽学⽣个性是调节变量。
⼜如,学⽣⼀般⾃我概念与某项⾃我概念(如外貌、体能等)的关系,受到学⽣对该项⾃我概念重视程度的影响:很重视外貌的⼈,长相不好会⼤⼤降低其⼀般⾃我概念;不重视外貌的⼈,长相不好对其⼀般⾃我概念影响不⼤,从⽽对该项⾃我概念的重视程度是调节变量。
这⼤体上可以通过y = b0 + b1 X + b2 M + b3 (X*M) + e这个函数式来表⽰,如果b3是显著的话,我们就说M调节了X与Y的关系。
⽽中介变量则是在考虑⾃变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现——上司对下属表现的归因——上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果⼀个变量与⾃变量或因变量相关不⼤,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与⾃变量和因变量的相关都不⼤。
有的变量,如性别、年龄等,由于不受⾃变量的影响,⾃然不能成为中介变量,但许多时候都可以考虑为调节变量。
调节变量(Moderator) vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
调节变量(Moderator)vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的.在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y对 X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析.潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差.如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。
调节变量与中介变量
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
一般人总是搞混两个之间的含义,因此造成统计数据的误差。
调节变量的定义
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱.
例如,学生的学习效果和指导方案的关系,往往受到学生个性的影响:一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。
又如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
中介变量的定义
考虑自变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现———上司对下属表现的归因———上司对下
属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与自变量和因变量的相关都不大。
有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。
对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。