线性代数第五章(答案)
- 格式:doc
- 大小:402.00 KB
- 文档页数:8
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
第五章n 维向量空间习题一1. 解:a-b = a+(-b)= (1,1,0)T +(0,-1,-1)T = (1,0,-1)T3a+2b-c = 3a+2b+(-c)= (3,3,0)T +(0,2,2)T +(-3,-4,0)T = (0,1,2)T2. 解: 3(a 1-a)+2(a 2+a) = 5(a 3+a) 3a 1+2a 2+(-3+2)a = 5a 3+5a 3a 1+2a 2+(-a) = 5a 3+5a3a 1+2a 2+(-a)+a+(-5)a 3 = 5a 3+5a+a+(-5)a 3 3a 1+2a 2+(-5)a 3 = 6a61[3a 1+2a 2+(-5)a 3] = 616a21a 1+31a 2+(-65)a 3 = a将a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,-1,1)T 代入a =21a 1+31a 2+(-65)a 3 中可得: a=(1,2,3,4)T .3. (1) V 1是向量空间.由(0,0,…,0)∈V 1知V 1非空.设a=(x 1,x 2,…,x n )∈V 1,b=(y 1,y 2,…,y n )∈V 1,则有x 1+x 2+…+x n =0,y 1+y 2+…+y n =0.因为(x 1+y 1)+(x 2+y 2)+…+(x n +y n )= (x 1+x 2+…+x n )+( y 1+y 2+…+y n )=0所以a+b=( x 1+y 1,x 2+y 2,…,x n +y n )∈V 1.对于k ∈R ,有 kx 1+kx 2+…+kx n =k(x 1+x 2+…+x n )=0所以ka=( kx 1,kx 2,…,kx n ) ∈V 1.因此V 1是向量空间.(2) V 2不是向量空间.因为取a=(1, x 2,…,x n )∈V 2 ,b=(1, y 2,…,y n )∈V 2,但a+b=(2, x 2+y 2,…,x n +y n )∉V 2.因此V 2不是向量空间.习 题 二1. 求向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式:(1) 解:设向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=k 1a 1+k 2a 2+k 3a 3+k 4a 4其中, k 1,k 2,k 3,k 4为待定常数.则将b=(0,2,0,-1)T ,a 1=(1,1,1,1)T ,a 2=(1,1,1,0)T ,a 3=(1,1,0,0)T ,a 4=(1,0,0,0)T 向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式中可得: (0,2,0,-1)T =k 1(1,1,1,1)T +k 2(1,1,1,0)T +k 3(1,1,0,0)T +k 4(1,0,0,0)T 根据对分量相等可得下列线性方程组:⎪⎪⎩⎪⎪⎨⎧-====++++++1201213214321k k k k k k k k k k解此方程组可得:k 1=-1,k 2=1,k 3=2,k 4=-2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-a 1+a 2+2a 3-2a 4 .(2) 与(1)类似可有下列线性方程组:⎪⎪⎩⎪⎪⎨⎧===-=+++++++++121332223212143214321k k k k k k k k k k k k k由方程组中的第一和第二个方程易解得:k 2=4,于是依次可解得:k 1=-2,k 3=-9, k 4=2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-2a 1+4a 2-9a 3+2a 4 .2.(1) 解:因为向量组中向量的个数大于每个向量的维数,由推论2知a 1,a 2 ,a 3,a 4线性相关.(2) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=400510111220510111331621111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.(3) 解:()⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-=00021011142012601117131442111321a a a因为()32321<=a a a R所以a 1,a 2,a 3线性相关.(4) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=500410111320410111211301111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.3. 证明:假设有常数k 1,k 2,k 3,使 k 1b 1+k 2b 2+k 3b 3=0又由于b 1=a 1,b 2=a 1+a 2,b 3=a 1+a 2+a 3,于是可得 k 1a 1+k 2(a 1+a 2)+k 3(a 1+a 2+a 3)=0 即(k 1+k 2+k 3)a 1+ (k 2+k 3)a 2+k 3a 3=0 因为a 1,a 2,a 3线性无关,所以有⎪⎩⎪⎨⎧==+=++000332321k k k k k k 解得⎪⎩⎪⎨⎧===000321k k k因此向量组b 1,b 2,b 3线性无关.4. 设存在常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0因为b 1=a 1+a 2,b 2= a 2+a 3,b 3=a 3+a 4,b 4= a 4+a 1 于是可得:k 1 (a 1+a 2)+k 2(a 2+a 3)+k 3(a 3+a 4)+k 4(a 4+a 1)=0 整理得:(k 1+k 4)a 1+ (k 2+k 1)a 2+(k 2+k 3)a 3+(k 3+k 4)a 4=0, (下用两种方法解)法 一:因为a 1,a 2,a 3,a 4为同维向量,则 (1) 当向量组a 1,a 2,a 3,a 4线性无关时,k 1+k 4=0, k 2+k 1=0,k 2+k 3=0,k 3+k 4=0可解得:k 2=- k 1,k 4=- k 1,k 3=k 1取k 1≠0可得不为0的常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0 因此b 1,b 2,b 3,b 4线性相关。
习题51.写出下列二次型f 的矩阵A 和矩阵表示式,并求二次型的秩。
(1)2212313121323(,,)35224f x x x x x x x x x x x =+−+−(2)2221231231323(,,)26f x x x x x x x x x x =+−++(3)2221234123121323(,,,)2f x x x x x x x x x x x x x =−++−+(4)123121323(,,)43f x x x x x x x x x =−+1.解:(1)f 的矩阵表示为311102125−⎛⎞⎜⎟−−⎜⎟⎜⎟−⎝⎠=A 其矩阵表示式为()112312323311(,,)102125x f x x x x x x x x −⎛⎞⎛⎞⎜⎟⎜⎟=−−⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠由于()3R =A ,故()3R f =。
(2)f 的矩阵表示为10310221312⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠A =其矩阵表示式为()1123123231031(,,)0221312x f x x x x x x x x ⎛⎞⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎝⎠由于()3R =A ,故()3R f =。
(3)f 的矩阵表示为1110221110211102000⎛⎞−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠A =其矩阵表示式为()1212341234341110221110(,,,)211102000x x f x x x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎜⎟⎜⎟⎝⎠由于()3R =A ,故()3R f =。
(4)f 的矩阵表示为3022120231022⎛⎞−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎜⎟⎝⎠A =其矩阵表示式为()11231232330221(,,)20231022x f x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎜⎟⎝⎠由于()3R =A ,故()3R f =。
第五章 相似矩阵与二次型§5-1 方阵的特征值与特征向量一、填空题1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-=2(1)(2)λλλ--2.设0是矩阵⎪⎪⎪⎭⎫ ⎝⎛=a 01020101A 的特征值,则=a 13.已知三阶方阵A 的特征值为1,-1,2,则232B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 .4.若0是方阵A 的特征值,则A 不可逆5. A 是n 阶方阵,||A d =,则*AA 的特征值是 ,,,d d d ⋅⋅⋅(共n 个)二、选择题1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D )(A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例2.设a=2是可逆矩阵A 的一个特征值,则1A -有一个特征值等于 ( C )A 、2;B 、-2;C 、12; D 、-12; 3.零为方阵A 的特征值是A 不可逆的( B )A 、充分条件;B 、充要条件;C 、必要条件;D 、无关条件;三、求下列矩阵的特征值和特征向量 1.1221A ⎛⎫=⎪⎝⎭解:A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2.100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量.当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四、设α为n 维非零列向量,证明:α是矩阵Tαα的特征向量, 并求α对应的特征值. 证明:因为(),0T T ααααααα=≠;所以,α是矩阵Tαα的特征向量,α对应的特征值为T αα。
第五章 相似矩阵与二次型一、是非题〔正确打√,错误打×〕1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. <√>2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. <√>3.n 阶正交阵A 的n 个行<列>向量构成向量空间n R 的一个规X 正交基. <√>4.若A 和B 都是正交阵,则AB 也是正交阵. <√>5.若A 是正交阵,Ax y =,则x y =. <√>6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. <×>7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. <×>8.n 阶矩阵A 在复数X 围内有n 个不同的特征值. <×>9. 矩阵A 有零特征值的充要条件是0=A . <√>10.若λ是A 的特征值,则)(λf 是)(A f 的特征值<其中)(λf 是λ的多项式>.<√>11.设1λ和)(212λλλ≠是A 的特征值,1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. <×>12.T A 与A 的特征值相同. <√>13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. <×>14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足:B PAP =-1,则A 与B 有相同的特征值. <√>15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. <√>16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. <√>17.实对称矩阵A 的非零特征值的个数等于它的秩. <√>18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. <√>19.实对称阵A 与对角阵 Λ相似:Λ=-AP P 1,这里P 必须是正交阵. <×>20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. <×>21.任一实对称矩阵合同于一对角矩阵. <√>22.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为标准型.<×>23.任给二次型Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化为规X 型.<×>二、填空题1.向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,求两向量2α=____,3α=____,使321,,ααα两两正交.Ans:()T 1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α 2.若A 是正交阵,即E A A T =,则=A _____. Ans:1或-13.设⎪⎪⎪⎭⎫ ⎝⎛--=121001065A ,则A 的特征值为________.<-1,2,3>4.n 阶方阵A =)(ij a 的特征值为n λλλ,,,21 ,则=A ___________,=+++nn a a a 2211_____________.5.设二阶行列式A 的特征值为2,3,λ,若行列式482-=A ,则____=λ.<-1>6.设三阶矩阵A 的特征值为-1,1,2,则=--E A 14_____,=-+*E A A 23______. Ans:-15,97. 已知⎪⎪⎪⎭⎫ ⎝⎛=x A 00110002的伴随矩阵*A 有一特征值为2-,则=x -1或2 .8. 若二阶矩阵A 的特征值为1-和1,则2008A =E .9.当x =___时,矩阵⎪⎪⎪⎭⎫ ⎝⎛=01010110x A 能对角化.<-1,见教材>10.设A 为2阶矩阵,1α,2α是线性无关的二维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为_______.提示:由⎪⎪⎭⎫ ⎝⎛=1200)()(2,12,1ααααA 知A 与⎪⎪⎭⎫ ⎝⎛1200相似,⎪⎪⎭⎫ ⎝⎛1200非零特征值为1.11、设A 为正交矩阵,λ为A 阵的特征值,则λA E -=_____0___.12、设3阶方阵A 的特征值为互不相同,若0=A 行列式则A 的秩为_____.<2>13.<3分>二次型32312123222144)(x x x x x x x x x a f +++++=经过正交变换Py x =可化为标准型216y f =,则a =_____.<a =2>14.二次型()222123123121323,,222f x x x x x x x x x x x x =+++++的秩是______; 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a .15.已知二次型yz xz xy z y x a f 222)(222-++++=,a 的取值为_____时f 为正定, a 的取值为_____时f 为负定. <1;2- a a >16. 二次型322322214332x x x x x f +++=经过正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x ______⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形=f _______,从而1),,(321=x x x f 表示的曲面类型是_________. Ans:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3212121212132100001y y y x x x ,23222152y y y f ++=,椭球面 三、 选择题 1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一特征值为< C >.<A> 22a ; <B>22a - ; <C>22-a ; <D>22--a .2.若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有<A >个线性无关.<A> 3个; <B> 1个; <C> 2个; <D> 4个.3.特征值一定是实数的矩阵是<B ><A>正交矩阵 <B> 对称矩阵<C>退化矩阵 <D>满秩矩阵4. 设α是矩阵A 对应于其特征值λ的特征向量,则其对角化矩阵AP P 1- 对应于λ的特征向量为< D >.<A>α1-P ; <B>αP ; <C>αT P ; <D>α .5. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是< C > .(A) A 的特征值全为正;<B> A 的一切顺序主子式全为正; <C> A 的元素全为正;<D>对一切n 维列向量x ,Ax x T 全为正.6.下列各式中有<A >等于22212136x x x x ++.<A> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛21213421,x x x x ; <B> ()112213,23x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; <C> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--21213511,x x x x ; <D> ()112211,43x x x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 7.矩阵〔 C 〕是二次型22212136x x x x ++的矩阵. <A>⎪⎪⎭⎫ ⎝⎛--3111;<B>⎪⎪⎭⎫ ⎝⎛3421;<C>⎪⎪⎭⎫ ⎝⎛3331; <D>⎪⎪⎭⎫ ⎝⎛3151;8.设A 、B 为同阶方阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,且BX X AX X T T =,当〔 D 〕时,B A =. <A>)()(B r A r =; <B>A A =T ;<C>B B =T ; <D>A A =T 且B B =T ;9.A 是n 阶正定矩阵的充分必要条件是〔 D 〕. <A>0>A ; <B>存在n 阶矩阵C,使C C A T =; <C>负惯性指标为零; <D>各阶顺序主子式均为正数; 10.1)()()(),,(22221,21--++-+-=n a x a x a x x x x f n n 是< B >. <A>非正定二次型 ;<B>正定; <C>负定; <D>不定;11.正定二次型),,(,21n x x x f 的矩阵应是〔 B 〕.<A>非对称且左右对角线上元素都是正数;<B>对称且各阶顺序子式都是正数;<C> 对称且所有元素都是正数;<D> 对称且矩阵的行列式是正数;12.使实二次型 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x k k k k k z y x 0101),,( 正定的参数k 应该是< C >.<A>0>k ;<B>02>k ;<C>不存在; <D>0<k ;13.阶矩阵A 为正定的充分必要条件是< C >. <A>0>A ; <B> 存在n 阶矩阵,使A=C C T ;<C> A 的特征值全大于0; <D> 存在n 维列向量α≠0,有0>ααA T ;14.次型232221321)2()1()1()(x k x k x k x x x f -+-++=,当< B >时是正定的.<A>k>0; <B> k>2; <C> k>1;<D> k=1;15.设A ,B 为正定矩阵,则< C >.<A>AB 、B A +都正定; <B>AB 正定,B A +不一定正定; <C>AB 不一定正定,B A +正定; <D>AB 和B A +都不一定正定;16.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是<C> <A>实对称矩阵 <B> 正定矩阵<C>可逆矩阵 <D>正交矩阵17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B ,则A 与B<A>合同, 且相似. <B> 合同, 但不相似 .<C>不合同, 但相似. <D> 既不合同, 又不相似.[ B ]18. 设矩阵⎪⎪⎭⎫ ⎝⎛=1221A , 则在实数域上与A 合同矩阵为〔 D 〕 <A> ⎪⎪⎭⎫ ⎝⎛--2112 <B>⎪⎪⎭⎫ ⎝⎛--2112 <C> ⎪⎪⎭⎫ ⎝⎛2112<D> ⎪⎪⎭⎫ ⎝⎛--1221 19.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是<A> 01≠λ <B> 02≠λ <C> 01=λ <D>02=λ [ B ]20.n 阶实对称矩阵A 为正定矩阵的充分必要条件是 < C > <A> 所有k 级子式为正),,2,1(n k = <B>A 的所有特征值非负 <C> 1-A 为正定矩阵 <D>秩<A >=n。
第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T=E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T)32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T)31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T)2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x . 因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161 ⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3=(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性: (1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4.解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A . 因为 0111>=a , 043111>=--, 06902031211>=--, 024>=A ,所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数. 令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。
思考题5-11. 1123123100,000=⋅+⋅+⋅=⋅+⋅+⋅a a a a 0a a a .2.不一定。
例如,对于123101,,012⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a a a ,它们中的任两个都线性无关,但是123,,a a a 是线性相关的。
3. 不一定。
也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。
4. 不一定。
例如,对于12121100,;,0012-⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦a ab b 。
12,a a 和12,b b 这两个向量组都线性相关,但1122,++a b a b 却是线性无关的。
5. 向量组121,,,,n n +a a a a 线性无关。
根据定理5-4用反证法可以证明这一结论。
习题5-11.提示:用行列式做。
(1)线性无关。
(2)线性相关。
.2. 0k ≠且1k ≠。
3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。
设[]12,,,,Tn b b b =b 则1122.n n b b b =+++b e e e4. 证法1:因为A 可逆,所以方程组=Ax b 有解。
根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关.证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。
5. .证:(1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。
(2)若P 可逆,则1-=A P B 。
由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。
注:该题也可根据性质5-6和性质5-3来证明。
线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:2 3(1);3 12 3 2解:I A3 7 0,313373 37 ,12221I A 37 2 3 1 1 3 372 1 0 1 37 6, T所以, ( 1I A)x 0 的基础解系为: (6,1 37) .T因此, A 的属于 1 的所有特征向量为: k 1( 6,1 37) (k 1 0).2I A1 337 211 3731 6372,T所以, ( 2 I A)x 0 的基础解系为: (6,1 37) .T A的属于 2 的所有特征向量为:k2 (6,1 37) (k2 0).因此,3 1 1(2) 2 0 1 ;1 1 23 1 1解:I A 2 1 ( 1)( 22)1 1 2所以,特征值为: 1 1(单根), 2 2 (二重根)2 1 1 1 0 01I A 2 1 1 0 1 11 1 1 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 0,1,1) .TA的属于 1 的所有特征向量为:k1( 0,1,1) (k1 0).因此,1 1 1 1 1 02 I A 2 2 1 0 0 11 1 0 0 0 0T 所以,( ) 02 I A x 的基础解系为:(1,1,0 ).T 因此,A的属于 2 的所有特征向量为:k2(1,1,0) (k2 0).20 0 (3) 111 ;1 1 320 0 解: IA 1 1 1 (32)113所以,特征值为:12 (三重根 )0 0 1 1 11I A 1 1 1 0 0 0 1 11T T所以, ( 1I A)x 0 的基础解系为: (1,1, 0) ,( 1,0 ,1) .因此, A 的属于 1 的所有特征向量为:Tk Tk 1(1,1, 0 )2( 1,0,1) ( k 1, k 2 为不全为零的任 意常数 )。
1 2 3 4 0 1 2 3 (4);0 0 1 2 0 0 0 112 3 4解: I A0 0 0 1 2 1 3 2 ( 1)40 0 0 1所以,特征值为:11(四重根 )0 2 3 41I A 02320 0 0 0T所以,( 1I A) x 0的基础解系为:(1, 0, 0,0) .因此,A的属于1的所有特征向量为:Tk1(1, 0, 0,0 )( k1 0 ) 4 5 2(5) 2 2 1 ;1 1 14 5 2解:I A 2 2 1 ( 31)1 1 1所以,特征值为: 1 1(三重根)3 5 2 1 0 11I A 2 3 1 0 1 11 1 0 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 1,1,1) .因此,A的属于 1 的所有特征向量为:Tk1( 1,1,1) ( k1 0 )2 2 0 (6) 2 1 2 ;0 2 02 2 0解:( 1)( 4)( 2)I A 2 1 20 2所以,特征值为: 1 1(单根), 2 4 (单根), 3 2(单根),1 2 0 1 0 11I A 20 2 0 2 10 2 1 0 0 0T所以,( 1I A)x 0 的基础解系为:( 2, 1,2 ).因此,A的属于 1 的所有特征向量为:Tk1( 2, 1,2) ( k1 0 )2 2 0 1 0 22I A 2 3 2 0 1 20 2 4 0 0 0T 所以,( 2 I A)x 0的基础解系为:(2, 2 ,1) .因此,A的属于 2 的所有特征向量为:Tk2(2, 2,1) ( k2 0 )4 2 0 2 0 12 3 2 0 1 13 I A0 2 2 0 0 0T 所以,( 3I A) x 0的基础解系为:(1,2,2) .因此,A的属于 3 的所有特征向量为:Tk3(1,2,2) ( k3 0 )7 4 12. 已知矩阵A 4 7 1的特征值 1 3 (二重), 2 12 , 求x的值,并求其特征4 4 x向量。
第五章 特征值和特征向量 矩阵的对角化答案1.求下列矩阵的特征值和特征向量:(1) 2331-⎛⎫ ⎪-⎝⎭ (2) 311201112-⎛⎫ ⎪ ⎪ ⎪-⎝⎭ (3) 200111113⎛⎫⎪⎪ ⎪-⎝⎭ (4) 1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭(5) 452221111-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭ (6) 220212020-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭【解析】(1) 令2331A -⎛⎫=⎪-⎝⎭,则矩阵A 的特征方程为22337031I A λλλλλ--==--=-故A的特征值为12λλ==当1λ=时,由1()0I A x λ-=,即120303x x ⎫⎛⎫⎛⎫⎪ ⎪ ⎪ = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝得其基础解系为(16,1Tx =-,因此,11k x (1k 为非零任意常数)是A 的对应于1λ=当232λ=时,由2()0I A x λ-=,即120303x x ⎫⎛⎫⎛⎫⎪ ⎪ ⎪ = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝得其基础解系为(26,1Tx =,因此,22k x (2k 为非零任意常数)是A的对应于2λ=的全部特征向量。
(2) 令311201112A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则矩阵A 的特征方程为 231121(1)(2)0112I A λλλλλλ---=--=--=--故A 的特征值为121,2λλ==(二重特征值)。
当11λ=时,由1()0I A x λ-=,即123211*********x x x --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭得其基础解系为()10,1,1Tx =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部特征向量。
当22λ=时,由2()0I A x λ-=,即123111022101100x x x --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得其基础解系为()21,1,0Tx =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。
线代第五章答案1) A 2) A 3) A 4) A2 印a〔 a ?a 〔 a ? 2 a2a aa 1a 3 a 2a3 2a35) A6) A1.写出下列矩阵对应的二次型x ; 2为 X 31)f (X 1,X 2,X 3) 2)3) f 化冬压)X 2 2X | 3x f 2%X 24X ^3 6X 2X 34)一、 温习巩固1、写出下列二次型的矩阵2 2 2f (为,X 2,X 3,X 4) X 1 2X 2 3X 3 2X 1X 2 4X 1X 3 6X 2X 32.判定下列二次型的正定性1)解:f (X 1,X 2, X 3) 3xf 6X 1X 3 x ; 4X 2X 3 8x ;的矩阵为 A所以f (X 1, X 2 , X 3)为正定32)解:此二次型的矩阵为A 2第五早二次型3 2 03 2顺序主子式3 3, 4 0.所以此二次型不是正定二次型.2 0, 2 2 22 20 2 1姓名 班级 学号 任课老师3) f (X i ,X 2,X 3) 2 2(1)为 X 2 6X 2X 3X 32,当取何值时,二次型f 为正定.解f(X i ,X 2,X 3)的矩阵为1 0A0 3,31 02A 11 0, A10,卜3A 1 9 0从而 3,故当3时,二次型 f 为正定.、练习提高1.求一正交变换X PY ,把二次型f(x i , X 2, X 3)2X I X 3 x 2化为标准型0 0 10 1解:此二次型的矩阵为A 0 1 0,特征多项式f() 0 1 0(1)2(1),1 0 0 1 01 01对应1 2 1有特征向量0 ,1 ,对应3 1有特征向量 0 ,1 01言0吉取 P 0 1 0 ,并令 X PY ,则二次型 f (x 1, X 2, X 3) 2x 1x 3 x 2 可化为 y 2 y ; yl 。
耕0詰2.求一个正交变换X PY ,把二次型f x 2 x ; x 2 2x 1x 3化为标准形1 0 11 0 1解: 此二次型的矩阵为A0 1 0 ,特征多项式f()0 1 0(1)( 2),1 0 11 0 111 对应10有特征向量0 ,对应2 1有特征向量 1 , 对应32有特征向量0 , 11专0专取P0 1 0 ,并令XPY ,则二次型fx 22X22 X32X 1X 3 可化为 y 2 2y 3。
第五章 二次型一、 温习巩固1、写出下列二次型的矩阵1)3111A -⎛⎫= ⎪-⎝⎭2)1112133223112A ⎛⎫- ⎪⎪ ⎪= ⎪ ⎪ ⎪-- ⎪⎝⎭ 3)1110213302231102000A ⎛⎫- ⎪⎪ ⎪ ⎪= ⎪ ⎪-- ⎪ ⎪⎝⎭4)2112132********233a a a a a A a a a a a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭5)2221A ⎛⎫= ⎪⎝⎭ 6)135357579A ⎛⎫⎪= ⎪ ⎪⎝⎭1. 写出下列矩阵对应的二次型1)2123213(,,)2f x x x x x x =+ 2)222123123(,,)32f x x x x x x =-+3)222123123121323(,,)23246f x x x x x x x x x x x x =+++++ 4)2221234123121323(,,,)23246f x x x x x x x x x x x x x =+++++ 2. 判定下列二次型的正定性1)解: 2221231132233(,,)3648f x x x x x x x x x x =++-+的矩阵为303012328A ⎛⎫⎪=- ⎪ ⎪-⎝⎭,130A =>,2303001A ==>,330301230328A A ==-=>-,所以123(,,)f x x x 为正定2)解: 此二次型的矩阵为320222021A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦顺序主子式3203233,20,22240.22021==>=-<所以此二次型不是正定二次型.3)22212312233(,,)(1)6f x x x x x x x x λλλ=-+-+,当λ取何值时,二次型f 为正定.解 123(,,)f x x x 的矩阵为1000303A λλλ-⎛⎫⎪=- ⎪ ⎪-⎝⎭,110A λ=->,()210100A λλλλ-==->,()()23190A A λλ==-->3λ>从而,故当3λ>时,二次型f 为正定.二、 练习提高1.求一正交变换X PY =,把二次型2123132(,,)2f x x x x x x =+化为标准型。
第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a解 根据施密特正交化方法⎪⎪⎪⎭⎫⎝⎛-==110111a b⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3 设x 为n 维列向量 x Tx 1 令H E 2xx T证明H 是对称的正交阵证明 因为 HT(E 2xx T )TE 2(xx T )T E 2(xx T )T E 2(x T )T x TE 2xx T所以H 是对称矩阵 因为 H THHH (E 2xx T )(E 2xx T )E 2xx T 2xxT (2xx T )(2xx T)E 4xx T 4x (x Tx )x TE 4xx T4xx TE所以H 是正交矩阵4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A B 是n 阶正交阵, 故A1A T B1B T(AB )T(AB )B T A TABB 1A 1AB E故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A故A 的特征值为1(三重). 对于特征值1 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A得方程(A E )x 0的基础解系p 1(1 1 1)T向量p 1就是对应于特征值1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A故A 的特征值为10 2139.对于特征值10, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A得方程A x 0的基础解系p 1(1 1 1)T向量p 1是对应于特征值10的特征值向量. 对于特征值21, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A得方程(A E )x0的基础解系p 2(1 1 0)T向量p 2就是对应于特征值21的特征值向量对于特征值39, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A得方程(A 9E )x 0的基础解系p 3(1/2 1/2 1)T向量p 3就是对应于特征值39的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(001010010100||+-=----=-λλλλλλλE A故A 的特征值为121341.对于特征值121, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 1(1 0 0 1)Tp 2(0 1 1 0)T向量p 1和p 2是对应于特征值121的线性无关特征值向量.对于特征值341, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 3(1 0 0 1)Tp 4(0 1 1 0)T向量p 3和p 4是对应于特征值341的线性无关特征值向量.6 设A 为n 阶矩阵 证明A T与A 的特征值相同证明 因为|ATE ||(A E )T ||AE |T |A E |所以A T与A的特征多项式相同从而A T与A的特征值相同7设n阶矩阵A、B满足R(A)R(B)n证明A与B有公共的特征值有公共的特征向量证明设R(A)r R(B)t则r t n若a1a2a n r是齐次方程组A x0的基础解系显然它们是A的对应于特征值0的线性无关的特征向量类似地设b1b2b n t是齐次方程组B x0的基础解系则它们是B 的对应于特征值0的线性无关的特征向量由于(n r)(n t)n(n r t)n故a1a2a n r b1b2b n t必线性相关于是有不全为0的数k1k2k n r l1l2l n t使k1a1k2a2k n r a n r l1b1l2b2l n r b n r0记k1a1k2a2k n r a n r(l1b1l2b2l n r b n r)则k1k2k n r不全为0否则l1l2l n t不全为0而l1b1l2b2l n r b n r0与b1b2b n t线性无关相矛盾因此0是A的也是B的关于0的特征向量所以A与B有公共的特征值有公共的特征向量8设A23A2E O证明A的特征值只能取1或2证明设是A的任意一个特征值x是A的对应于的特征向量则(A23A2E)x2x3x2x(232)x0因为x0所以2320即是方程2320的根也就是说1或29设A为正交阵且|A|1证明1是A的特征值证明因为A为正交矩阵所以A的特征值为1或1(需要说明)因为|A|等于所有特征值之积又|A|1所以必有奇数个特征值为1即1是A的特征值10设0是m阶矩阵A m n B n m的特征值证明也是n阶矩阵BA的特征值证明设x是AB的对应于0的特征向量则有(AB)x x于是B(AB)x B(x)或BA(B x)(B x)从而是BA 的特征值 且B x 是BA 的对应于的特征向量11 已知3阶矩阵A 的特征值为1 2 3 求|A 35A27A |解 令()3527 则(1)3 (2)2(3)3是(A )的特征值 故 |A 35A27A ||(A )|(1)×(2)×(3)3231812 已知3阶矩阵A 的特征值为1 2 3 求|A *3A 2E | 解 因为|A |12(3)60 所以A 可逆 故A *|A |A 16A 1 A *3A 2E 6A13A 2E 令()6132 则(1)1 (2)5 (3)5是(A )的特征值 故 |A *3A 2E ||6A 13A 2E ||(A )|(1)×(2)×(3)15(5)2513 设A 、B 都是n 阶矩阵 且A 可逆 证明AB 与BA 相 似证明 取P A 则P 1ABP A 1ABA BA即AB 与BA 相似 14设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化求x解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为l 1=6, l 2=l 3=1.因为A 可相似对角化, 所以对于l 2=l 3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设l 是特征向量p 所对应的特征值, 则(A -lE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得l =-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A得A 的特征值为1231由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A E )2 所以齐次线性方程组(A E )x 0的基础解系只有一个解向量 因此A不能相似对角化16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A由λλλλ-------=-20212022E A (1)(4)(2)得矩阵A 的特征值为122134.对于12, 解方程(A 2E )x 0 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x得特征向量(1 2 2)T单位化得T)32 ,32 ,31(1=p对于21, 解方程(A E )x 0即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x 得特征向量(2 1 2)T单位化得T)32 ,31 ,32(2-=p对于34, 解方程(A 4E )x 0即0420232022321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x 得特征向量(2 2 1)T单位化得T)31 ,32 ,32(3-=p于是有正交阵P (p 1 p 2 p 3)使P 1AP diag(2 1 4)(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A由λλλλ-------=-542452222E A (1)2(10),得矩阵A 的特征值为121310. 对于121, 解方程(A E )x 0即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x得线性无关特征向量(2 1 0)T和(2 0 1)T将它们正交化、单位化得T 0) 1, ,2(511-=pT5) ,4 ,2(5312=p对于310, 解方程(A 10E )x 0即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x 得特征向量(1 22)T单位化得T)2 ,2 ,1(313--=p于是有正交阵P (p 1 p 2 p 3) 使P 1AP diag(1 1 10)17设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似求x y 并求一个正交阵P 使P 1AP解 已知相似矩阵有相同的特征值 显然54y 是的特征值故它们也是A 的特征值 因为4是A 的特征值所以)4(9524242425|4|=-=---+---=+x x E A 解之得x 4已知相似矩阵的行列式相同 因为100124242421||-=-------=A yy2045||-=-=Λ所以20y 100 y 5 对于5 解方程(A5E )x 0 得两个线性无关的特征向量(1 0 1)T(12 0)T将它们正交化、单位化得T)1 ,0 ,1(211-=pT)1 ,4 ,1(2312-=p对于4解方程(A 4E )x 0 得特征向量(2 1 2)T单位化得T)2 ,1 ,2(313=p于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P 使P 1AP18. 设3阶方阵A 的特征值为122231; 对应的特征向量依次为p 1(0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A .解 令P (p 1 p 2 p 3) 则P 1AP diag(2 2 1)A P P1因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P所以 ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=24435433219 设3阶对称阵A 的特征值为112130 对应1、2的特征向量依次为p 1(122)Tp 2(2 1 2)T求A 解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A 则A p 12p 1A p22p 2 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x ①⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x ②再由特征值的性质 有x 1x 4x 61230 ③由①②③解得 612131xx --= 6221x x =634132x x -=642131x x -=654132x x += 令x 60 得311-=x x 20323=x 314=x 325=x因此 ⎪⎪⎭⎫ ⎝⎛-=022********A20. 设3阶对称矩阵A 的特征值162333 与特征值16对应的特征向量为p 1(111)T求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A因为16对应的特征向量为p 1(1 1 1)T所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ①233是A 的二重特征值, 根据实对称矩阵的性质定理知R (A 3E )1 利用①可推出⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A因为R (A 3E )1 所以x 2x 43x 5且x 3x 5x 63 解之得 x 2x 3x 51 x 1x 4x 64因此 ⎪⎪⎭⎫⎝⎛=411141114A .21 设a (a 1 a 2 a n )Ta 10 A aaT(1)证明0是A 的n1重特征值证明 设是A 的任意一个特征值 x 是A 的对应于的特征向量 则有A x x2x A 2x aa T aa T x a T a A xa T ax 于是可得2a T a 从而0或a T a设12n是A 的所有特征值 因为A aa T的主对角线性上的元素为a 12a 22a n2所以a 12a 22 a n 2a T a12n这说明在12n中有且只有一个等于a Ta而其余n 1个全为0即0是A 的n 1重特征值(2)求A 的非零特征值及n 个线性无关的特征向量解 设1a T a2n因为A a aa Ta(a Ta )a 1a 所以p 1a 是对应于1a T a 的特征向量对于2n0 解方程A x0 即aa Tx 0因为a 0 所以a T x 0 即a 1x 1a 2x 2 a n x n 0 其线性无关解为p 2(a 2 a 1 0 0)T p 3(a 3 0 a 10)Tp n (a n 0 0a 1)T因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p22设⎪⎪⎭⎫⎝⎛-=340430241A 求A 100解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A得A 的特征值为1125 35 对于11 解方程(A E )x 0 得特征向量p 1(1 0 0)T对于15 解方程(A5E )x得特征向量p 2(212)T对于15 解方程(A 5E )x 0 得特征向量p 3(1 21)T令P (p 1p 2 p 3) 则P 1AP diag(1 5 5)A P P 1A100P 100P1因为100diag(1 51005100)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=100100100500050150123 在某国 每年有比例为p 的农村居民移居城镇 有比例为q 的城镇居民移居农村 假设该国总人口数不变 且上述人口迁移的规律也不变 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n y n 1)(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A解 由题意知 x n 1x n qy n px n (1p )x n qy n y n1y n px n qy n px n (1q )y n可用矩阵表示为⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111因此 ⎪⎭⎫⎝⎛--=q p q p A 11(2)设目前农村人口与城镇人口相等 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x 求⎪⎭⎫ ⎝⎛n n y x解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ得A 的特征值为11 2r 其中r 1p q对于11 解方程(AE )x 0 得特征向量p 1(q p )T对于1r 解方程(A rE )x 0 得特征向量p 2(1 1)T令⎪⎭⎫⎝⎛-==11) ,(21p q P p p 则P 1AP diag(1 r )A P P 1A nPnP 1于是 11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q Ann⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(2124. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求(A )A105A9解 由)5)(1(3223||--=----=-λλλλλE A得A 的特征值为1125对于11 解方程(A E )x 0 得单位特征向量T )1 ,1(21 对于15 解方程(A5E )x得单位特征向量T)1 ,1(21-于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P 使得P 1AP diag(1 5)从而A P P1AkP kP1因此(A )P ()P 1P (1059)P 1P [diag(1 510)5diag(1 59)]P 1P diag(4 0)P 1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求(A )A 106A 95A8解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P使得P 1AP diag(1 1 5) A P P1 于是(A )P ()P1P (106958)P1P [8(E )(5E )]P 1P diag(1 158)diag(2 0 4)diag(6 4 0)P 1P diag(12 0 0)P 1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033*********223123161 ⎪⎪⎭⎫⎝⎛----=4222112112. 25. 用矩阵记号表示下列二次型:(1) f x24xy 4y22xz z24yz解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f x2y 27z 22xy 4xz 4yz解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f x 12x 22x 32x 422x 1x 24x 1x 32x 1x 46x 2x 34x 2x 4解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26 写出下列二次型的矩阵 (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A(2)xx x ⎪⎪⎭⎫⎝⎛=987654321)(Tf解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A27. 求一个正交变换将下列二次型化成标准形:(1) f 2x 123x 223x 334x 2x 3解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A 由)1)(5)(2(320230002λλλλλλλ---=---=-E A得A 的特征值为1225 31. 当12时, 解方程(A2E )x 0由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A得特征向量(1 0 0)T取p 1(1 0 0)T当25时, 解方程(A5E )x 0由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A得特征向量(0 1 1)T取T )21 ,21,0(2=p .当31时, 解方程(A E )x 0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A得特征向量(0 11)T取T )21 ,21 ,0(3-=p于是有正交矩阵T (p 1 p 2 p 3)和正交变换x T y 使f 2y 125y 22y 32.(2) f x 12x 22x 32x 422x 1x 22x 1x 42x 2x 32x 3x 4解 二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=1101111001111011A 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为1123341.当11时, 可得单位特征向量T)21 ,21 ,21 ,21(1--=p当23时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p当341时, 可得线性无关的单位特征向量T)0 ,21 ,0 ,21(3=pT)21 ,0 ,21 ,0(4=p于是有正交矩阵T ( p 1 p 2 p 3 p 4)和正交变换xT y 使fy 123y 22y 32y 42.28 求一个正交变换把二次曲面的方程3x25y25z24xy 4xz 10yz 1化成标准方程解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A由)11)(2(552552223||---=-------=-λλλλλλλE A 得A 的特征值为122113对于12解方程(A 2E )x 0 得特征向量(4 1 1)T单位化得)231 ,231 ,234(1-=p 对于211 解方程(A 11E )x得特征向量(122)T单位化得)32 ,32 ,31(2-=p对于30 解方程A x0 得特征向量(0 1 1)T单位化得)21 ,21 ,0(3=p于是有正交矩阵P (p 1 p 2 p 3) 使P 1AP diag(2 11 0) 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234使原二次方程变为标准方程2u 211v2129. 明: 二次型f x TA x 在||x ||1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT1diag(12n)成立 其中12n为A 的特征值, 不妨设1最大作正交变换y T x 即xT T y 注意到T1T T 有f x T A x y T TAT T y y T y 1y122y 22 n y n2因为y T x 正交变换 所以当||x ||1时 有||y ||||x ||1 即y 12y 22 y n 21因此f1y 122y 22n y n 21又当y 11 y 2y 3 y n 0时f 1所以f max 130 用配方法化下列二次形成规范形 并写出所用变换的矩阵 (1) f (x 1 x 2 x 3)x 123x 225x 322x 1x 24x 1x 3 解 f (x 1 x 2 x 3)x 123x 225x 322x 1x 24x 1x 3(x 1x 22x 3)24x 2x 32x 22x 32(x 1x 22x 3)22x 22(2x 2x 3)2令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x yy y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C(2) f (x 1 x 2 x 3)x 122x 322x 1x 32x 2x 3 解 f (x 1 x 2 x 3)x 122x 322x 1x 32x 2x 3(x 1x 3)2x 322x 2x 3 (x 1x 3)2x 22(x 2x 3)2令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C(3) f (x 1 x 2 x 3)2x 12x 224x 322x 1x 22x 2x 3 解 f (x 1 x 2 x 3)2x 12x 224x 322x 1x 22x 2x 33223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C 31 设 f x 12x 225x 322ax 1x 22x 1x 34x 2x 3为正定二次型 求a解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A 其主子式为 a 111 2111a a a -= )45(5212111+-=--a a a a因为f 为正主二次型 所以必有1a 20且a (5a 4)0 解之得054<<-a32. 判别下列二次型的正定性:(1) f 2x 126x 224x 322x 1x 22x 1x 3解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f x 123x 229x 3219x 422x 1x 24x 1x 32x 1x 46x 2x 412x 3x 4解 二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛------=19631690230311211A 因为0111>=a , 043111>=--, 06902031211>=--, 024>=A所以f 为正定.33 证明对称阵A 为正定的充分必要条件是 存在可逆矩阵U 使A U T U 即A与单位阵E 合同证明 因为对称阵A 为正定的 所以存在正交矩阵P 使 P T AP diag(1 2 n ) 即A P P T其中1 2 n 均为正数 令), , ,diag(211n λλλ⋅⋅⋅=Λ 则11 A P 11T P T 再令U 1T P T则U 可逆 且A U T U。
第五章 相似矩阵及二次型一、 是非题(正确打√,错误打×)1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ )2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ )3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ )4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ )5.若A 是正交阵, Ax y =,则x y =. ( √ )6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. ( × )7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × )8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × )9. 矩阵A 有零特征值的充要条件是0=A . ( √ )10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ )11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ )13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ )15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ )16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ )17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ )18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ )19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。
( × )20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T不是二次型. ( √ )21.任一实对称矩阵合同于一对角矩阵。
( √ )22.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × )23.任给二次型Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。
( × )二、 填空题1.向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,求两向量2α=____,3α=____,使321,,ααα两两正交. Ans: ()T 1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α 2.若A 是正交阵,即E A A T =,则=A _____. Ans: 1或 -13.设⎪⎪⎪⎭⎫ ⎝⎛--=121001065A ,则A 的特征值为________. (-1 ,2, 3) 4.n 阶方阵A =)(ij a 的特征值为n λλλ,,,21 ,则=A _____11nn i i λλλλ==∏______,=+++nn a a a 2211_____121nn i i λλλλ=+++=∑________.5.设二阶行列式A 的特征值为2,3, λ,若行列式482-=A ,则____=λ.(-1)6.设三阶矩阵A 的特征值为-1,1,2,则=--E A 14_____,=-+*E A A 23______. Ans:-15,97. 已知⎪⎪⎪⎭⎫ ⎝⎛=x A 00110002的伴随矩阵*A 有一特征值为2-,则=x . 8. 若二阶矩阵A 的特征值为1-和1,则2008A = .9.当x =___时,矩阵⎪⎪⎪⎭⎫ ⎝⎛=01010110x A 能对角化.(-1,见教材)10.设A 为2阶矩阵, 1α,2α是线性无关的二维列向量, 01=αA , 2122ααα+=A ,则A 的非零特征值为_______.提示:由 ⎪⎪⎭⎫⎝⎛=1200)()(2,12,1ααααA 知A 与⎪⎪⎭⎫ ⎝⎛1200相似, ⎪⎪⎭⎫ ⎝⎛1200非零特征值为1. 11、设A 为正交矩阵,λ 为A 阵的特征值,则 λA E -=__________.12、设3阶方阵A 的特征值为互不相同,若0=A 行列式则A 的秩为___2__13. 二次型32312123222144)(x x x x x x x x x a f +++++=经过正交变换Py x =可化为 标准型216y f =, 则 a =__2___14.二次型()222123123121323,,222f x x x x x x x x x x x x =+++++的秩是______; 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a .15.已知二次型yz xz xy z y x a f 222)(222-++++=,a 的取值为__2a ___时f 为正定, a 的取值为___1a -__时f 为负定.16. 二次型322322214332x x x x x f +++=经过正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x ______⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形=f _______,从而1),,(321=x x x f 表示的曲面类型是_________. Ans: ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3212121212132100001y y y x x x ,23222152y y y f ++=,椭球面 三、 选择题1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一特征值为( A ).(A) 22a ; (B)22a - ; (C)22-a ; (D)22--a .2. 若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有(A )个线性无关.(A) 3个; (B) 1个; (C) 2个; (D) 4个.3.特征值一定是实数的矩阵是(B )(A)正交矩阵 (B) 对称矩阵(C)退化矩阵 (D) 满秩矩阵4. 设α是矩阵A 对应于其特征值λ的特征向量,则其对角化矩阵AP P 1- 对应于λ的特征向量为( D ).(A)α1-P ; (B)αP ; (C)αT P ; (D)α .5. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是( D ) .(A) A 的特征值全为正;(B) A 的一切顺序主子式全为正;(C) A 的元素全为正;(D)对一切n 维列向量x ,Ax x T 全为正.6.下列各式中有(A )等于22212136x x x x ++。
(A) ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛21213421,x x x x ; (B) ()112213,23x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;(C) ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--21213511,x x x x ; (D) ()112211,43x x x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 7.矩阵( C )是二次型22212136x x x x ++的矩阵。
(A)⎪⎪⎭⎫ ⎝⎛--3111;(B)⎪⎪⎭⎫ ⎝⎛3421;(C)⎪⎪⎭⎫ ⎝⎛3331; (D)⎪⎪⎭⎫ ⎝⎛3151; 8.设A 、B 为同阶方阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,且BX X AX X T T =,当( D )时,B A =。
(A))()(B r A r =; (B)A A =T ;(C)B B =T ; (D)A A =T 且B B =T ;9.A 是n 阶正定矩阵的充分必要条件是( D )。
(A)0>A ; (B)存在n 阶矩阵C ,使C C A T =;(C)负惯性指标为零; (D)各阶顺序主子式均为正数; 10.1)()()(),,(22221,21--++-+-=n a x a x a x x x x f n n 是( B )。
(A)非正定二次型 ;(B)正定; (C)负定; (D)不定;11.正定二次型),,(,21n x x x f 的矩阵应是( B )。
(A)非对称且左右对角线上元素都是正数;(B)对称且各阶顺序子式都是正数;(C) 对称且所有元素都是正数;(D) 对称且矩阵的行列式是正数;12.使实二次型 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x k k k k k z y x 0101),,( 正定的参数k 应该是( C )。
(A)0>k ; (B)02>k ; (C)不存在; (D)0<k ;13.阶矩阵A 为正定的充分必要条件是( C )。
(A) 0>A ; (B) 存在n 阶矩阵,使A=C C T ;(C) A 的特征值全大于0; (D) 存在n 维列向量α≠0,有0>ααA T ;14.次型232221321)2()1()1()(x k x k x k x x x f -+-++=,当( B )时是正定的。
(A) k>0; (B) k>2; (C) k>1; (D) k=1;15.设A ,B 为正定矩阵,则( D )。
(A)AB 、B A +都正定; (B)AB 正定,B A +不一定正定;(C)AB 不一定正定,B A +正定; (D) AB 和B A +都不一定正定;16.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是( C )(A)实对称矩阵 (B) 正定矩阵(C)可逆矩阵 (D) 正交矩阵17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B的关系为( B )(A)合同, 且相似. (B) 合同, 但不相似 .(C)不合同, 但相似. (D) 既不合同, 又不相似.18. 设矩阵⎪⎪⎭⎫ ⎝⎛=1221A , 则在实数域上与A 合同矩阵为( D ) (A) ⎪⎪⎭⎫ ⎝⎛--2112 (B)⎪⎪⎭⎫ ⎝⎛--2112 (C) ⎪⎪⎭⎫ ⎝⎛2112 (D) ⎪⎪⎭⎫ ⎝⎛--1221 19.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是 ( B )(A) 01≠λ (B) 02≠λ (C) 01=λ (D) 02=λ20.n 阶实对称矩阵A 为正定矩阵的充分必要条件是 ( C )(A) 所有k 级子式为正),,2,1(n k = (B) A 的所有特征值非负(C) 1-A 为正定矩阵 (D)秩(A )=n。