02 能量与动量方程
- 格式:doc
- 大小:428.00 KB
- 文档页数:15
动量与能量结合的公式在咱们的物理世界里,动量与能量的结合那可是相当有趣且重要的一部分。
先来说说动量,它可以简单理解为物体运动的“冲击力”。
想象一下,一辆高速行驶的汽车,就算你能瞬间挡住它不让它再往前移动一厘米,但你依然能感受到它那种强大的“冲劲儿”,这就是动量。
而能量呢,就像是物体的“本事”。
比如一个被举高的重物,它就具有了重力势能,一旦松开手,它就能依靠这份“本事”往下掉落,产生各种效果。
当动量和能量结合起来,那公式就登场啦!动量与能量结合的公式就是:$E_{k} = \frac{p^2}{2m}$ 。
这里的 $E_{k}$ 表示动能,$p$ 是动量,$m$ 是物体的质量。
为了更好地理解这个公式,我想起之前给学生们上课时候的一件事。
当时我在课堂上讲这个知识点,有个特别调皮的学生,总是坐不住,注意力不集中。
我就拿了个小皮球,问大家:“如果我把这个皮球用力扔出去,它的动量会怎样?能量又会怎样?” 这时候,那个调皮的学生眼睛一下子亮了起来,开始认真思考。
我接着说:“大家想想,如果这个皮球质量变大,按照咱们的公式,它的动能又会怎么变化?” 同学们纷纷讨论起来,那个调皮学生也积极参与,还争着回答问题。
咱们再深入一点,这个公式在实际生活中的应用那可多了去了。
就比如说在交通事故中,车辆的碰撞就是动量和能量的相互作用。
车速越快,动量越大,碰撞时产生的能量也就越大,造成的破坏也就越严重。
这也是为什么要限制车速,就是为了减少事故中的动量和能量,降低危害。
还有在体育比赛里,像打乒乓球、羽毛球,运动员击球的力量和速度,其实都涉及到动量和能量的变化。
运动员要根据球的来势,巧妙地控制自己的力量和击球时机,以达到最佳的效果。
这背后,动量与能量的结合公式可是默默发挥着作用呢。
再说说火箭发射,那更是动量与能量结合的精彩展示。
火箭燃料燃烧产生巨大的推力,让火箭获得极大的动量,同时也赋予了它巨大的能量,从而能够挣脱地球引力,飞向太空。
动量和能量的关系公式动量和能量是物理学中两个重要的物理量,它们之间存在着紧密的关系。
在经典力学中,动量和能量可以通过公式进行相互转化。
首先,我们来看动量的定义。
动量是物体的运动状态的量度,它定义为物体的质量乘以速度:动量 = 质量×速度。
动量的单位是千克·米/秒(kg·m/s)。
而能量则描述了物体所具有的做工能力。
能量可以通过物体的动能和势能来表示。
动能是物体由于运动而具有的能量,它等于物体的质量乘以速度的平方再除以2:动能 = 1/2 ×质量×速度^2。
动能的单位也是千克·米/秒(kg·m/s)。
势能则是物体由于位置而具有的能量,它与物体所处位置的势场相关,例如重力势能、弹性势能等。
根据动量和能量的定义可以得知,动量和能量的关系是通过速度来联系的。
由动量的定义可知,动量正比于速度,即动量随速度的变化而变化。
而根据动能的定义可以得知,动能正比于速度的平方。
因此,动量和能量之间存在以下关系:动能 = 动量的平方 / (2 ×质量)这个公式表明,当物体的质量不变时,动量的平方和动能呈正比关系。
当动量增加时,动能也会增加。
这意味着,在碰撞或运动过程中,当物体的动量增加时,它的动能也会增加。
此外,还存在能量守恒定律,即在一个封闭系统中,能量的总量保持不变。
这意味着在物体之间发生碰撞或相互作用时,能量可以从一个物体转移到另一个物体,但总能量保持不变。
总结起来,动量和能量之间存在紧密的联系,而它们的关系可以通过速度、质量和能量守恒定律进行描述和推导。
这些公式和定律的应用使得我们能够更好地理解和解释物体的运动和相互作用过程。
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
能量与动量的关系(下面用到的符号含义:E :能量;p :动量;m :静质量;m':动质量;c :光速;v :粒子的运动速度;k E :动能;h :普朗克常量;ν:频率;λ:波长)最近在量子力学教材中看到两种能量与动量关系的表达式:(1)E=2mp 2; (2)E=pc 。
为探讨他们的区别,作如下分析:在(1)中,能量E 指的是动能,即认为运动粒子的能量全部表现为动能,因为:E=2m p 2=2mv 21;在(2)中,E=pc=c c v1mv22-=vc m'而相对论中的能量与动量关系表达式为:2E =222)mc ((pc)+可以证明,上面的关系式与质能方程等价,因为: 2E =222)mc ((pc)+=222c)c v 1mv(-+22)mc (=2222)c cv 1m (-=22)c (m',即E=2c m' 另外,相对论中的动能表达式为:k E =2c m'-2mc可以看到,若粒子是光量子,则:E=pc ,2E =222)mc ((pc)+,k E =2c m'-2mc 三式是等价的,因为对于光量子, m =0,p=m'c,且其能量全部为动能,故有:E =k E =pc=2c m';然而对于其他粒子,显然以上三式是不等价的。
经过上述分析,我们看到:(1)式是非相对论性的粒子的能量动量关系式;(2)式是相对论性的光量子的能量动量关系式。
然而事实真是如此吗?我们可以看一下德布罗意关系式:E=hν;p=h/λ。
由此可推出:E=hν=pλν=pc我们知道德布罗意关系式对任何粒子都是成立的,那么由其推出的E=pc应该也适用于任何粒子,这显然与上面得出的E=pc只适用于光量子的结论矛盾。
问题到底出在哪里?通过仔细的检查,我们可以发现这样的事实:前面讨论的(1)、(2)两式中,速度v和c都是指粒子运动的速度;而在德布罗意关系式中,λν=c是指波速。
第五部分动量和能量第一讲基本知识介绍一、冲量和动量1、冲力(F —t 图象特征)→冲量。
冲量定义、物理意义冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y …3、定理推论:动量变化率等于物体所受的合外力。
即tP ∆∆=ΣF 外 三、动量守恒定律1、定律、矢量性2、条件a 、原始条件与等效b 、近似条件c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F —S 图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a 、恒力的功:W=FScos α=FS F =F S Sb 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力)c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a 、ΣW 的两种理解b 、动能定理的广泛适用性六、机械能守恒1、势能a 、保守力与耗散力(非保守力)→势能(定义:ΔE p =-W 保)b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a 、定律内容b 、条件与拓展条件(注意系统划分)c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。
七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。
2、三种典型的碰撞a 、弹性碰撞:碰撞全程完全没有机械能损失。
满足——m 1v 10+m 2v 20=m 1v 1+m 2v 221m 1210v +21m 2220v =21m 121v +21m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:v 1=21201021m m v 2v )m m (++-,v 2=12102012m m v 2v )m m (++- 对于结果的讨论:①当m 1=m 2时,v 1=v 20,v 2=v 10,称为“交换速度”;②当m 1<<m 2,且v 20=0时,v 1≈-v 10,v 2≈0,小物碰大物,原速率返回;③当m 1>>m 2,且v 20=0时,v 1≈v 10,v 2≈2v 10,b 、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c 、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有 v 1=v 2=21202101m m v m v m ++ 3、恢复系数:碰后分离速度(v 2-v 1)与碰前接近速度(v 10-v 20)的比值,即: e=201012v v v v --。
流动控制方程
流动控制方程是描述流体在流动过程中的动量守恒、质量守恒和能量守恒的方程。
在流体力学中,流动控制方程通常包括连续性方程、动量方程和能量方程。
1. 连续性方程:描述了流体的质量守恒,即单位时间内通过某一截面的质量流量等于流过该截面的质量的减少率。
连续性方程可以用以下形式表示:
∂ρ/∂t + ∇·(ρv) = 0
其中,ρ为流体的密度,t为时间,v为速度矢量。
2. 动量方程:描述了流体的动量守恒,即单位时间内通过某一截面的动量流量等于流过该截面的动量的减少率。
动量方程可以用以下形式表示:
∂(ρv)/∂t + ∇·(ρvv) = -∇p + μ∇^2v + ρg
其中,ρ为流体的密度,t为时间,v为速度矢量,p为压力,
μ为动力粘度,g为重力加速度。
3. 能量方程:描述了流体的能量守恒,即单位时间内通过某一截面的能量流量等于流过该截面的能量的减少率。
能量方程可以用以下形式表示:
∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + ρg·v
其中,E为单位质量的总能量,T为流体的温度,k为热导率,ρ为流体的密度,t为时间,v为速度矢量,p为压力,g为重
力加速度。
这些方程是流体力学的基本方程,用于研究流体在不同条件下
的运动和变化。
根据具体情况和问题,可能会对流动控制方程进行简化或添加适当的辅助方程。
能量守恒动量守恒联立公式
能量守恒和动量守恒是物理学中两个重要的守恒定律。
能量守恒
表明在一个封闭系统中,能量总量保持不变。
动量守恒则表明在一个
封闭系统中,动量总量保持不变。
能量守恒和动量守恒可以用数学公式表示为:
1.能量守恒公式:
初能量+输入能量=末能量+输出能量
这可以表示为:E_i + E_in = E_f + E_out
2.动量守恒公式:
初动量+输入动量=末动量+输出动量
这可以表示为:P_i + P_in = P_f + P_out
在一些物理过程中,同时满足能量守恒和动量守恒是非常重要的。
例如,弹性碰撞中能量守恒和动量守恒的联立公式可以用于推导出一
些关于速度和质量的有用关系。
在核反应和高能物理实验中,能量守
恒和动量守恒也经常被用来研究粒子的性质和相互作用。
总之,能量守恒和动量守恒是物理学中两个十分重要的守恒定律,它们形成了我们对自然界中各种物理现象和过程行为的理解基础。
第五部分动量和能量第一讲基本知识介绍一、冲量和动量1、冲力(F —t 图象特征)→冲量。
冲量定义、物理意义冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y …3、定理推论:动量变化率等于物体所受的合外力。
即tP ∆∆=ΣF 外 三、动量守恒定律1、定律、矢量性2、条件a 、原始条件与等效b 、近似条件c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F —S 图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a 、恒力的功:W=FScos α=FS F =F S Sb 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力)c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a 、ΣW 的两种理解b 、动能定理的广泛适用性六、机械能守恒1、势能a 、保守力与耗散力(非保守力)→势能(定义:ΔE p =-W 保)b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a 、定律内容b 、条件与拓展条件(注意系统划分)c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。
七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。
2、三种典型的碰撞a 、弹性碰撞:碰撞全程完全没有机械能损失。
满足——m 1v 10+m 2v 20=m 1v 1+m 2v 221m 1210v +21m 2220v =21m 121v +21m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:v 1=21201021m m v 2v )m m (++-,v 2=12102012m m v 2v )m m (++- 对于结果的讨论:①当m 1=m 2时,v 1=v 20,v 2=v 10,称为“交换速度”;②当m 1<<m 2,且v 20=0时,v 1≈-v 10,v 2≈0,小物碰大物,原速率返回;③当m 1>>m 2,且v 20=0时,v 1≈v 10,v 2≈2v 10,b 、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c 、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有 v 1=v 2=21202101m m v m v m ++ 3、恢复系数:碰后分离速度(v 2-v 1)与碰前接近速度(v 10-v 20)的比值,即: e=201012v v v v --。
§3 恒定总流伯努利方程综合性实验3.1 实验目的和要求1.通过定性分析实验,提高对动水力学诸多水力现象的实验分析能力;2.通过定量测量实验,进一步掌握有压管流中动水力学的能量转换特性,验证流体恒定总流的伯努利方程,掌握测压管水头线的实验测量技能与绘制方法;3.通过设计性实验,训练理论分析与实验研究相结合的科研能力。
3.2 实验装置1.实验装置简图实验装置及各部分名称如图3.1所示。
图3.1 伯努利方程综合性实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器 3. 溢流板 5. 稳水孔板6. 恒压水箱7. 实验管道8. 测压点①~○199. 弯针毕托管10. 测压计11. 滑动测量尺12. 测压管①~○1913. 实验流量调节阀13.回水漏斗2.装置说明(1) 流量测量——称重法或量体积法称重法或量体积法是在某一固定的时段内,计量流过水流的重量或体积,进而得出单位时间内流过的流体量,是依据流量定义的测量方法。
本实验及后述各实验的测流量方法常用称重法或量体积法,用秒表计时,用电子称称重,小流量时,也可用量筒测量流体体积。
为保证测量精度,一般要求计时大于15~20秒。
(2) 测流速——弯针管毕托管弯针管毕托管用于测量管道内的点流速,原理见第2章2.3.3。
为减小对流场的干扰,本装置中的弯针直径为φ1.6⨯1.2 mm (外径⨯内径)。
实验表明只要开孔的切平面与来流方向垂直,弯针管毕托管的弯角从90︒~180︒均不影响测流速精度,如图3.2所示。
(3) 本仪器测压点有两种:1) 毕托管测压点,图3.1中标号为①、⑥、⑧、○12、○14、○16、○18(后述加*表示),与测压计的测压管连接后,用以测量毕托管探头对准点的总水头值,近似替代所在断面的平均总水头值,可用于定性分析,但不能用于定量计算;2) 普通测压点,图3.1中标号为②、③、④、⑤、⑦、⑨、⑩、○11、○13、○15、○17、○19,与测压计的测压管连接后,用以测量相应测点的测压管水头值。
(4) 测点⑥*、⑦所在喉管段直径为d 2,测点○16*、○17所在扩管段直径为d 3,其余直径均为d 1。
3.基本操作方法(1)测压管与连通管排气。
打开开关供水,使水箱充水,待水箱溢流,全开阀13,将实验管道7中气体完全排尽,再检查调节阀关闭后所有测压管水面是否齐平。
如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。
(2)恒定流操作。
全开调速器,此时水箱保持溢流,阀门13开度不变情况下,实验管道出流为恒定流。
uu90~180图3.2 弯针管毕托管类型(3)非恒定流操作。
调速器开、关过程中,水箱6无溢流情况下,实验管道出流为非恒定流。
(4)流量测量。
实验流量用阀13调节,流量用称重法测量。
3.3 实验原理1.伯努利方程。
在实验管路中沿管内水流方向取n 个过水断面,在恒定流动时,可以列出进口断面(1)至另一断面(i )的伯努利方程式(i =2,3…,n )221111w122i i i i i p p z z h g g g gααρρ-++=+++v v取α1=α2=αn …=1,选好基准面,从已设置的各断面的测压管中读出pz gρ+值,测出通过管路的流量,即可计算出断面平均流速v 及22gαv ,从而可得到各断面测管水头和总水头。
2.过流断面性质。
均匀流或渐变流断面流体动压强符合静压强的分布规律,即在同一断面上pz C gρ+=,但在不同过流断面上的测压管水头不同,1212p p z z g g ρρ+≠+;急变流断面上p z C gρ+≠。
3.4 实验内容与方法1.定性分析实验(1) 验证同一静止液体的测压管水头线是根水平线。
阀门全关,稳定后,实验显示各测压管的液面连线是一根水平线。
而这时的滑尺读数值就是水体在流动前所具有的总能头。
想一想:若某一根测压管液面不在测压管水头线的水平线上,原因可能是a)有气泡堵塞在连通管上;b )测压管粗细不均而受毛细现象影响;c)测压计滑尺的导轨不水平;d)受污物堵塞。
其中不正确的答案是()(2) 观察不同流速下,某一断面上水力要素变化规律。
以测点⑧*、⑨所在的断面为例,测管⑨的液面读数为该断面的测压管水头。
测管⑧*连通毕托管,显示测点的总水头。
实验表明,流速越大,水头损失越大,水流流到该断面时的总水头越小,断面上的势能亦越小。
(3) 验证均匀流断面上,动水压强按静水压强规律分布。
观察测点②和③,尽管位置高度不同,但其测压管的液面高度相同,表明pz C gρ+=。
变一变:将均匀流断面变成急变流断面,动水压强也按静水压强规律分布吗?为什么在绘制总水头线时,测点⑩、○11应舍弃? (4) 观察沿流程总能坡线的变化规律。
加大开度,使接近最大流量,若稳定后各测管水位如图3.3所示,图中A-A为管轴线。
图3.3 测压管水位示例纵观带毕托管的测点①*、⑥*、⑧*、○12*、○14*、○16*、○18*的测管水位(实验时可加入雷诺实验用的红色水,使这些管呈红色,如图3.3中以较深颜色表示的测压管),可见各测管的液面沿流程是逐渐降低而没有升高的,表明总能量沿流程只会减少,不会增加,能量损失是不可能逆转的。
扩一扩:预习流动阻力与水头损失概念,判别下列说法对的是( 、 ) a)h 1-6是沿程阻力损失; b) h 1-6是管段1—5的沿程损失与收缩段5—6的局部损失之和; c) h 8-14是沿程损失; d) h 8-14是管段8—14的沿程损失与两个弯道管段的局部损失之和。
(5) 观察测压管水头线的变化规律。
总变化规律:纵观测压点②、④、⑤、⑦、⑨、○13、○15、○17、○19的测压管水位,可见沿流程有升也有降,表明测压管水头线沿流程可升也可降。
沿程水头损失:从②、④、⑤点可看出沿程水头损失的变化规律,等径管道上,距离相等,沿程损失相同。
势能与动能的转换:以测点⑤、⑦、⑨为例,测点所在流段上高程相等,管径先收缩后扩大,流速由小增大再减小。
测管⑤到测管⑦的液位发生了陡降,表明水流从测点⑤断面流到测点⑦断面时有部分压力势能转化成了流速动能。
而测管⑦到测管⑨测管水位回升了,这正和前面相反,说明有部分动能又转化成了压力势能。
这就清楚验证了动能和势能之间是可以互相转化的,因而是可逆的。
位能和压能的转换:以测点⑨与○15所在的两断面为例,由于二断面的流速水头相等,测点⑨的位能较大,压能(测管液位离管轴线的高度)很小,而测点○15的位能很小,压能却比⑨点大,这就说明了水流从测点⑨断面流到测点○15断面的过程中,部分位能转换成了压能。
想一想:在恒定流条件下,测压管水头线沿管轴线逐渐升高表示:()a)管径渐缩;b)管径渐扩;c)管径不变;d)等径管管轴线高程逐渐抬高。
(6) 利用测压管水头线判断管道沿程压力分布。
测压管水头线高于管轴线,表明该处管道处于正压下;测压管水头线低于管轴线,表明该处管道处于负压下,出现了真空。
高压和真空状态都容易使管道破坏。
实验显示(参图 3.3),测点⑦的测管液面低于管轴线,说明该处管段承受负压(真空);测压管⑨的液位高出管轴线,说明该处管段承受正压。
动一动:拔下测点⑦处的皮管,会出现什么现象?拔下测点⑨处的皮管,又会有什么现象?2. 定量分析实验——伯努利方程验证与测压管水头线测量分析实验实验方法与步骤:在恒定流条件下改变流量2次,其中一次阀门开度大到使○19号测管液面接近可读数范围的最低点,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管测点供演示用,不必测记读数)。
实验数据处理与分析参考3.5 。
3.设计性实验——改变水箱中的液位高度对喉管真空度影响的实验研究为避免引水管道的局部负压,可采取的技术措施有(a)减小流量;(b)增大喉管管径;(c)降低相应管线的安装高程;(d)改变水箱中的液位高度。
下面分析后两项。
对于措施(c),以本实验装置为例(参图 3.4),可在水箱出口先接一下垂90 弯管,后接水平段,将喉管的高程降至基准高程0-0,使位能降低,压能增大,从而可能避免点⑦处的真空。
该项措施常用于实际工程的管轴线设计中。
图3.4 实验管道系统图对于措施(d),不同供水系统调压效果是不同的,需作具体分析。
可通过理论分析与实验研究相结合的方法,确定改变作用水头(如抬高或降低水箱的水位)对管中某断面压强的影响情况。
本设计性实验要求利用图3.1实验装置,设计改变水箱中的液位高度对喉管真空度影响的实验方案并进行自主实验。
理论分析与实验方法提示:取基准面0-0如图3.4所示,图中1-1、2-2、3-3分别为计算断面1、2、3,计算断面1的计算点选在液面位置,计算断面2、3的计算点选在管轴线上。
水箱液面至基准面0-0的水深为h 。
改变水箱中的液位高度对喉管真空度影响的问题,实际上就是22p z gρ+随h 递增还是递减的问题,可由22()pz h g ρ∂+∂加以判别。
列计算断面1、2的伯努利方程(取α2=α3=1)有2222w122p h z h g gρ-=+++v (1)因h w1-2可表示成 23w 121.22c h gζ-=v 式中ζc1.2是管段1-2总水头损失因数,当阀门开度不变时,在h 的有限变化范围内,可设ζc1.2近似为常数。
又由连续性方程有2243322d g d g=()22v v 故式(1)可变为43221.22[()]c d p z h g d ζρ+=-+232gv (2)式中23/2g v 可由断面1、3伯努利方程求得, 即2331.3(1)2c h z gζ=++v (3)ζc1.3是全管道的总水头损失因数,当阀门开度不变时,在h 的有限变化范围内,可设ζc1.3近似为常数。
由此得2331.321c h z g ζ-=+v , 代入式(2)有 43322 1.22 1.3[()]()1c c d h z p z h g d ζρζ-+=-++ (4) 则 4321.222 1.3(/)(/)11c c d d z p g h ζ∂ρ∂ζ++=-+ (5) 若432 1.21.3(/)11c c d d ζζ+-+>0,则断面2上的22pz g ρ+随h 同步递增,反之,则递减。
若接近于0,则断面2上的22p z gρ+随h 变化不明显。
实验中,先测计常数d 3/d 2、h 和z 3各值,然后针对本实验装置的恒定流情况,测得某一大流量下22p z gρ+、22/2g v 、23/2g v 等值,将各值代入式(2)、(3),可得各管道阻力因数ζc1.2和ζc1.3。
再将其代入式(5)得22(/)z p g hρ∂+∂,由此可得出改变水箱中的液位高度对喉管真空度影响的结论。
最后,利用变水头实验可证明该结论是否正确。