水力学57恒定总流的动量方程
- 格式:ppt
- 大小:1007.50 KB
- 文档页数:5
绪论1、密度是指单位体积液体所含有的质量 量纲为[M/L3],单位为kg/m32、容重是指单位体积液体所含有的重量 量纲为[F/L3],单位为N/m3一般取ρ水=1000 kg/m3,γ水=9800N/m3=9.8kN/m3第一章 水静力学1、静水压强的特性:①静水压强垂直指向受压面②作用于同一点上各方向的 静水压强的大小相等2、3、绝对压强——以设想没有大气存在的绝对真空状态作为零点计量的压强,用p ′表示(绝对压强恒为正值)相对压强——以当地大气压作为零点计量的压强,用p 表示。
(相对压强可正可负) 4、真空——当液体中某点的绝对压强小于当地大气压强pa , 即其相对压强为负值时,称为水力意义上的“真空”真空值(或真空压强)——指绝对压强小于大气压强的数值,用pk 来表示 5、压强的单位:1个工程大气压=98kN/㎡ =10m 水柱压=735mm 水银柱压6、压强的测量①测压管②U 形水银测压计③差压计7、静水压强分布图的绘制规则:1.按一定比例,用线段长度代表该点静水压强的大小 2.用箭头表示静水压强的方向,并与作用面垂直 8、平面的静水总压力的计算 ①图解法②解析法9、作用于曲面上的静水总压力(投影) 第二章 液体运动的流束理论1、迹线——某液体质点在运动过程中,不同时刻所流经的空间点所连成的线。
流线——是指某一瞬时,在流场中绘出的一条光滑曲线,其上所有各点的速度向量都与该曲线相切。
/流管——由流线构成的一个封闭的管状曲面 微小流束——充满以流管为边界的一束液流总流——在一定边界内具有一定大小尺寸的实际流动的水流,它是由无数多个微小流束组成2、水流的分类(1)按运动要素是否随时间变化①恒定流——运动要素不随时间变化②非恒定流——运动要素随时间变化(2)按同一流线上各质点的流速矢是否沿流程变化①均匀流——同一流线上流速矢沿流程不发生变化②非均匀流 a 、渐变流b 、急变流 3、均匀流的重要特性(1)过水断面为平面,且过水断面的形状和尺寸沿程不变(2) 同一流线上不同点的流速应相等,从而各过水断面上的流速分布相同,断面平均流速相等(3) 均匀流(包括非均匀的渐变流)过水断面上的动水压强分布规律与静水压强分布规律p z C gρ+=0p p ghρ=+相同,即在同一过水断面上各点的测压管水头为一常数推论:均匀流(包括非均匀的渐变流)过水断面上动水总压力的计算方法与静水总压力的计算方法相同。
恒定总流的动量方程利用前面介绍的连续性方程和能量方程,已经能够解决许多实际水力学问题,但对于某些较复杂的水流运动问题,尤其是涉及到计算水流与固体边界间的相互作用力问题,如水流作用于闸门的动水总压力,以及水流经过弯管时,对管壁产生的作用力等计算问题,用连续性方程和能量方程则无法求解,而必须建立动量方程来解决这些问题。
动量方程实际上就是物理学中的动量定理在水力学中的具体体现,它反映了水流运动时动量变化与作用力间的相互关系,其特点是可避开计算急变流范围内水头损失这一复杂的问题,使急变流中的水流与边界面之间的相互作用力问题较方便地得以解决。
一、动量方程式的推导及适用条件(一)动量方程式的推导由物理学可知,物体的质量m 与速度υ的乘积称为物体的动量。
动量是矢量,其方向与流速方向相同。
物体在外力作用下,速度会发生改变,同时动量也随之变化。
动量定理可表述为:运动物体单位时间内动量的变化等于物体所受外力的合力。
现将动量定理用于恒定流中,推导恒定流的动量方程。
图3-29在不可压缩的恒定流中,任取一渐变流微小流束段1—2(图3-29)。
设1—1断面和2—2断面的过水断面面积和流速分别为21、dA dA 和1u 、2u ,经过dt 时段后,微小流束由原来的1—2位置运动到了新的位置21'-'处,从而发生了变化。
设其动量的变化为dk ,它应等于流段21'-'与流段1—2内的动量之差。
因为水流为不可压缩的恒定流,所以对于公共部分21-'段来讲,虽存在着质点的流动的替换现象,但它的形状、位置以衣液体的质量、流速等均不随时间发生变化,故动量也不随时间发生改变。
这样,在dt 时段内,21'-'段的水流动量与1—2段的动量之差实际上即为22'-段的动量与11'-段的动量之差。
在dt 时段内,通过11'-段的水体质量为11dtdA u ρ,通过22'-段的水体质量为22dtdA u ρ,对于不可压缩液体,根据连续性方程,可知dQdt dtdA u dtdA u ρρρ==2211,则微小流束段的动量变化为)(12u u dQdt k d -=ρ设总流两个过水断面的面积分别为21A A 与,将上述微小流束的动量变化k d 沿相应的总流过水断面进行积分,即可得到总流在dt 时段内动量的变化量为)()()(121112221212a dA u u dA u u dt u dQdt u dQdt u u dQdt k d A A QQ Q ⎰⎰⎰∑⎰⎰-=-=-=ρρρρ 由于实际液体过水断面上的流速分布均匀,且不易求得,故考虑用断面平均流速υ来代替断面上不均匀分布的流速u ,以便计算总流的动量。
One 绪 论1、水力学的任务:一、研究液体(主要是水)的平衡。
二、液体机械运动的规律及其实际应用。
2、液体的主要物理性质:2.1、惯性、质量与密度 惯性力:当液体受外力作用使运动状态发生改变时,由于液体的惯性引起对外界抵抗的反作用力。
F =-m*a 单位:N 量纲:MLT-2密度:是指单位体积液体所含有的质量。
国际单位:kg/m 3 量纲:[ML-3] 一个标准大气压下,温度为4℃,蒸馏水密度为1000 kg/m 3 。
2.2万有引力特性与重力万有引力:是指任何物体之间相互具有吸引力的性质,其吸引力称为万有引力。
重力:地球对物体的引力称为重力,或称为重量。
2.3粘滞性与粘滞系数当液体处在运动状态时,若液体质点之间存在着相对运动,则质点间要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性,此内摩擦力又称为粘滞力。
动力粘滞系数,简称粘度,随液体种类不同而异的比例系数。
国际单位 :牛顿•秒/米2 牛顿内摩擦定律:作层流运动的液体,相邻液层间单位面积上所作用的内摩擦力(或粘滞力),与流速梯度成正比,同时与液体的性质有关。
牛顿内磨擦定律适用条件:只能适用于牛顿流体。
2.4压缩性及压缩率 2.5 表面张力表面张力仅在自由表面存在,液体内部并不存在。
大小:用表面张力系数来度量。
单位:牛顿/米(N/m )。
3、连续介质和理想液体、实际液体的概念3.1连续介质: 即假设液体是一种连续充满其所占据空间毫无空隙的连续体。
3.2理想液体:就是把水看作绝对不可压缩、不能膨胀、没有粘滞性、没有表面张力的连续介质。
3.3有没有考虑粘滞性:是理想液体和实际液体的最主要差别。
4、作用于液体上的力4.1表面力:作用于液体的表面,并与受作用的表面面积成比例的力。
例如摩擦力、水压力。
4.2质量力:是指通过所研究液体的每一部分质量而作用于液体的、其大小与液体的质量成比例的力。
如重力、惯性力。
5、水力学的研究方法5.1理论分析 5.2科学实验。
恒定总流的动量矩方程利用上节介绍的动量方程,只能确定水流与边界之间相互总用里的大小和方向,不能给出作用点的位置。
要解决这一问题,可运用动量矩方程求得。
水流通过水轮机或水泵等水力机械时是在叶片所构成的通道内流动的,这时水流与叶片之间有力的作用,受水流作用的转轮叶片本身又绕一固定轴转动,在分析这类问题时需要了解动量矩变化与外力之间的关系。
利用微小流束的动量方程对某固定点取矩,可得到微小流束的动量矩方程F r u r u r dQ ⨯=⨯-⨯)(1122ρ (3-41)式中 r 1、r 2分别是从固定点到流速矢量u 1、u 2的作用点的矢径。
再在总流过水断面上求矢量积分则得恒定总流的动量矩方程)(1111222212F r dA u u r dA u u r A A ⨯∑=⨯-⨯⎰⎰ρρ (3-42)这就是说,单位时间里控制面内恒定总流的动量矩变化(流出的动量矩与流入的动量矩之矢和差)等于作用于该控制面内所有液体质点的外力矩之和。
动量矩方程的一个最重要的应用是利用它导出叶片式流体机械(泵、风机、水轮机及涡轮机等)的基本方程。
现以离心泵或风机为例作推导。
如图3-37(a )所示,流体从叶轮的内缘流入,经叶片槽道于外缘流出。
叶轮中流体质点作复合运动:一方面,在离心力的作用下相对叶片流动(相对运动);另一方面,流体质点受旋转叶片的作用作圆周运动(牵连运动)。
流体质点的绝对速度c 应等于其相对速度w 与牵连速度(又称为圆周速度)u 的矢量和,即c =w +u (3-43)离心泵或风机的进出口速度三角形如图所示。
其中a 1与a 2分别是进出口绝对速度与相应圆周速度的夹角。
图3-37取进出口轮缘(两圆柱面)为控制面。
此时,尽管对于固结在机壳上的惯性坐标系来说,叶轮中流体是非恒定流,但控制面内的动量矩不随时间改变,故仍可运用恒定总流的动量矩方程(3-42)。
假定断面流速分布是均匀的(一元流动),注意到对轮心的外力矩中,重力的合力矩等于零,叶轮进出口圆柱面上的动水压强p 1与p 2因通过轮心,其力矩也等于零,流体与叶片间的切应力指向轮心,其力矩仍等于零,只有叶片对流体的作用力对转轴产生了力矩M 。
⽔⼒学常⽤知识讲解(笔记)《⽔⼒学》学习指南第⼀章绪论(⼀)液体的主要物理性质1.惯性与重⼒特性:掌握⽔的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产⽣能量损失的根本原因。
描述液体内部的粘滞⼒规律的是⽜顿内摩擦定律 :注意⽜顿内摩擦定律适⽤范围:1)⽜顿流体, 2)层流运动3.可压缩性:在研究⽔击时需要考虑。
4.表⾯张⼒特性:进⾏模型试验时需要考虑。
下⾯我们介绍⽔⼒学的两个基本假设: (⼆)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以⽤连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作⽤在液体上的两类作⽤⼒第⼆章⽔静⼒学⽔静⼒学包括静⽔压强和静⽔总压⼒两部分内容。
通过静⽔压强和静⽔总压⼒的计算,我们可以求作⽤在建筑物上的静⽔荷载。
(⼀)静⽔压强:主要掌握静⽔压强特性,等压⾯,⽔头的概念,以及静⽔压强的计算和不同表⽰⽅法。
1.静⽔压强的两个特性:(1)静⽔压强的⽅向垂直且指向受压⾯(2)静⽔压强的⼤⼩仅与该点坐标有关,与受压⾯⽅向⽆关,2.等压⾯与连通器原理:在只受重⼒作⽤,连通的同种液体内, 等压⾯是⽔平⾯。
(它是静⽔压强计算和测量的依据)3.重⼒作⽤下静⽔压强基本公式(⽔静⼒学基本公式)p=p 0+γh 或其中: z —位置⽔头,p/γ—压强⽔头(z+p/γ)—测压管⽔头请注意,“⽔头”表⽰单位重量液体含有的能量。
4.压强的三种表⽰⽅法:绝对压强p ′,相对压强p ,真空度p v , ↑它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(⼯程⼤⽓压)=98000N/m 2=98KN/m2下⾯我们讨论静⽔总压⼒的计算。
计算静⽔总压⼒包括求⼒的⼤⼩、⽅向和作⽤点,受压⾯可以分为平⾯和曲⾯两类。