6. 第六章 相平衡
- 格式:ppt
- 大小:2.39 MB
- 文档页数:98
第六章相平衡§6.1 相律(1)相相:体系中物理性质和化学性质完全均匀的部分称为相。
相与相之间的界面称为相界面。
相数用符号P(或Φ)表示。
1、气相体系中无论有多少种气体存在,只认为是一相,即P=1。
2、液相由于不同种类液体互溶程度不同,体系中可以有一相、两相或三相(很少出现),即P=1,2,3。
3、固相固溶体:不同种类固体若以分子程度大小分散混合形成的物质称为固体溶液,简称固溶体。
固溶体为一相,即P=1。
非固体溶液有几种固体算几相。
(2)物种数与组分数1、物种数体系中含有化学物质的种类数称物种数,用S表示。
2、组分数平衡体系中各相组成所需的最少独立物种数称组分数,用C表示。
注意:组分数与物种数不同,体系中有几种物质,物种数就是多少,但组分数C ≤ S 。
如果体系中各物质之间没有化学反应,则C = S 。
如果体系中各物质之间有化学反应,则C = S–R 。
R —独立化学平衡数如果体系中各物质之间有浓度比例限制,则C = S–R' 。
R'—独立浓度限制数(关系数)如果体系中各物质之间既有化学反应又有浓度比例限制,则:C = S–R–R'注意:独立浓度限制数只有在同一相中才可使用。
例如:CaCO3 = CaO + CO2S=3,R=1,R'=0C=3-1-0=2(3)自由度自由度:在相平衡物系中能够独立改变的强度性质的数目称自由度,用f 表示。
注意:独立变量的任意改变要求不能导致物系中相数发生变化。
例如:T指定T指定T和PP可任意改变P不能任意改变均不能任意改变f = 2 f = 1 f = 0=25℃ t=0.0098℃P=23.69 mmHg P=4.578 mmHg (4)相律相律:平衡体系中,组分数C、相数P及自由度f之间的相互关系称为相律。
表达式:f = C – P + nn —影响体系平衡状态的外界因素的数目,通常为温度和压力。
通常情况:f = C – P + 2推导过程:设某一平衡物系有C个组分,P个相,且C个组分在每一个相中均存在,此时:对于一个相 f = C –1对于所有相 f = P(C –1)因为平衡时各相的温度、压力相同,则:f = P(C –1)+ 2由于每一个组分在每一个相中的化学位均相等,即:)P (1)3(1)2(1)1(1μ==μ=μ=μ (P –1 个关系式) )P (2)3(2)2(2)1(2μ==μ=μ=μ (P –1 个关系式) ┆ ┆ ┆ ┆)P (C)3(C )2(C )1(C μ==μ=μ=μ (P –1 个关系式) 共有 C (P –1)个关系式。
第六章 相平衡主要公式及其适用条件1. 1. 吉布斯相律2+-=P C F式中F 为系统的自由度数(即独立变量数);P 为系统中的相数;“2”表示平衡系统只受温度、压力两个因素影响。
要强调的是,C 称为组分数,其定义为C =S -R -R ′,S 为系统中含有的化学物质数,称物种数;R 为独立的平衡化学反应数;'R 为除任一相中∑=1B x (或1B =ω)。
同一种物质在各平衡相中的浓度受化学势相等限制以及R 个独立化学反应的标准平衡常数θK 对浓度限制之外,其他的浓度(或分压)的独立限制条件数。
相律是表示平衡系统中相数、组分数及自由度数间的关系。
供助这一关系可以解决:(a )计算一个多组分多平衡系统可以同时共存的最多相数,即F =0时,P 值最大,系统的平衡相数达到最多;(b )计算一个多组分平衡系统自由度数最多为几,即是确定系统状态所需要的独立变量数;(c )分析一个多相平衡系统在特定条件下可能出现的状况。
应用相律时必须注意的问题:(a )相律是根据热力学平衡条件推导而得的,故只能处理真实的热力学平衡系统;(b )相律表达式中的“2”是代表温度、压力两个影响因素,若除上述两因素外,还有磁场、电场或重力场对平衡系统有影响时,则增加一个影响因素,“2”的数值上相应要加上“1”。
若相平衡时两相压力不等,则2+-=P C F 式不能用,而需根据平衡系统中有多少个压力数值改写“2”这一项;(c )要正确应用相律必须正确判断平衡系统的组分数C 和相数P 。
而C 值正确与否又取决与R 与R ‘的正确判断;(d )自由度数F 只能取0以上的正值。
如果出现F <0,则说明系统处于非平衡态。
2. 2. 杠杆规则杠杆规则在相平衡中是用来计算系统分成平衡两相(或两部分)时,两相(或两部分)的相对量,如图6-1所示,设在温度为T 下,系统中共存的两相分别为α相与β相。
图6-1 说明杠杆规则的示意图图中M ,α,β分别表示系统点与两相的相点;B M x ,B x α,B x β分别代表整个系统,α相和β相的组成(以B 的摩尔分数表示);n ,αn 与βn 则分别为系统点,α相和β相的物质的量。
第六章相平衡§6-1 相律1.基本概念(1)相和相数相:系统中物理性质和化学性质完全相同的均匀部分称为相,系统中相数目为相数。
相数用“P”表示。
相的确定:气体:无论有多少种物质都为一相液体:根据相互的溶解性可为一相、二相、三相固体:由固体的种类及晶型决定(固熔体除外)(2)自由度和自由度数自由度:能够维系系统原有相数,而可以独立改变的变量叫自由度,这种变量的数目叫做自由度数,用“F”表示。
说明:a)在一定范围内,任意改变F不会使相数改变。
b)自由度数和系统内的物种数和相数有关。
2.相律物种数:系统中所含独立物质的数目,用“S”表示。
依据:自由度数=总变量数-非独立变量数=总变量数-方程式数相律表达式:F = C – P + 2式中C = S –R- R’称组分数R 独立反应的方程式数R’独立限制条件3.几点说明(1) 每一相中均含有S种物质的假设,不论是否符合实际,都不影响相律的形式。
(2) 相律中的2表示整体温度、压强都相同。
(3) F = C – P + 2是通常的形式。
(4) 凝聚相系统的相律是F = C – P + 1§6.2单组分系统相图相图:表示相平衡系统的组成与温度、压力之间的图形。
单组分系统一相:P=1 则F=1-1+2=2(T,P)双变量系统二相:P=2 则F=1-2+2=1(T或P)单变量系统三相:P=3 则F=1-3+2=0 无变量系统1.水的相平衡实验数据由数据可得:(1)水与水蒸气平衡,蒸气压随温度的升高而增大;(2)冰与水蒸气平衡,蒸气压随温度的升高而增大;(3)冰与水平衡,压力增大,冰的熔点降低;(4)在0.01℃和610Pa下,冰、水和水蒸气共存,三相平衡。
2. 水的相图单相区:液态水,水蒸气,冰双相线:OA —液固共存线,冰的熔点曲线OB —气固共存线,冰的饱和蒸气压曲线OC —气液共存线,水的饱和蒸气压曲线三相点:冰、水和水蒸气共存相图的说明(1) 冰在熔化过程中体积缩小,故水的相图中熔点曲线的斜率为负,但大多数物质熔点曲线的斜率为正。
第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数。
2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别。
3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因。
4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理。
5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线。
了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用。
6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质。
二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律。
水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础。
超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣。
二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度(在二组分相图上都是条件自由度),为以后看懂复杂的二组分相图打下基础。
最高(或最低)恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别。
第六章相平衡思考题解答1、答:可能平衡。
相平衡的条件是任一组分在各相的化学势相等。
2、答:不等于零,约为水的饱和蒸气压。
3、答:不变,因为根据相律有:F=C-P+2=1,即蒸气压只是温度的函数。
4、答:是两相,因为二者的物理性质不同。
5、答:是两相,因为从微观的角度来看,粒子之间仍存在界面。
6、答:是一相,因为形成了固溶体(合金)。
7、答:都等于1。
因为C=S-R-R’=3-1-1=1。
8、答:在冰点的自由度不为零。
对于单组分体系C=1,F+P=3,冰点时P=2,故F=1。
9、答:有液体。
根据其相图可知液态存在的条件是T:216.6~304.3K;P:5.11~73pθ。
10、答:是的,此时是三相平衡。
习题解答1. 解:① C=5,P=4,F=3 ② C=5,P=2,F=5 ③ C=2,P=1,F=2 ④ C=2,P=2,F=2 ⑤ C=3,P=2,F=3 2. 解:因甲苯和苯形成理想液态混合物,故两者蒸气分压均可以用拉乌尔定律进行计算。
(1)原来系统为液态,当开始出现气相时,其量极少,可以认为液相组成不变,此时系统的压力p :B A p p p +=B B A A x p x p p ∗∗+=,而1=+B A x x ,联解、整理可得)1(A B A A x p x p p −+=∗∗设甲苯为A ,苯为B ,则459.0)114.78(0.200)078.92(0.200)078.92(0.200)()(111=⋅+⋅⋅=+=−−−mol g g mol g g mol g g M m M m M m x B B A AA A A所以,p=54.22kP a×0.459+136.12kP a×(1-0.459)=98.53kPa 又253.053.98/459.022.54//=×===∗kPa kPa p x p p p y A A A A 故747.0253.011=−=−=A B y y(2)压力降低,液体不断气化,当压力降至某一数值时,则系统内产生极小的一液滴,此时气相组成与未气化前的液体组成相同,即y A =0.459。
第六章 相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶) 二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。
1、相律: F = C - P + n , 其中: C=S-R-R’ (1) 强度因素T ,p 可变时n =2 (2) 对单组分系统:C =1, F =3-P(3) 对双组分系统:C =2,F =4-P ;应用于平面相图时恒温或恒压,F =3-P 。
2、相图(1)相图:相态与T ,p ,x 的关系图,通常将有关的相变点联结而成。
(2)实验方法:实验主要是测定系统的相变点。
常用如下四种方法得到。
对于气液平衡系统,常用方法蒸气压法和沸点法; 液固(凝聚)系统,通常用热分析法和溶解度法。
3、单组分系统的典型相图对于单组分系统C =1,F =C -P +2=3-P 。
当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。
p T lBC AOsgC 'pTlBCA Os gFGD单斜硫pT液体硫B CAO正交硫硫蒸气(a) 正常相图 (b) 水的相图 (c) 硫的相图图6-1 常见的单组分系统相图4、二组分系统的相图类型:恒压的t -x (y )和恒温的p -x (y )相图。
相态:气液相图和液-固(凝聚系统)相图。
(1)气液相图根据液态的互溶性分为完全互溶(细分为形成理想混合物、最大正偏差和最大负偏差)、部分互溶(细分为有一低共溶点和有一转变温度的系统)和完全不溶(溶液完全分层)的相图。
可以作恒温下的p -x (压力-组成)图或恒压下的t -x (温度-组成)图,见图5-2和图5-3。
B Apx B (y B )B Apx B (y B)BApx B (y B )(a) 理想混合物 (b) 最大负偏差的混合物 (c) 最大正偏差的混合物图6-2 二组分系统恒温下的典型气液p -x 相图BAtx B (y B)BAtx B (y B)BAtx B (y B )(a) 理想或偏差不大的混合物 (b) 具有最高恒沸点(大负偏差) (c) 具有最低恒沸点(大正偏差)BAtxBBAtx B DCGFOgg + l g + ll 1 + l 2p = 常数lBAtx B (y B )(d) 有最高会溶点的部分互溶系统 (e)有最高和最低会溶点的部分互溶系统 (f) 沸点与会溶点分离x B (y B)B Atx B (y B )BAtBAtx B (y B )(g) 液相部分互溶的典型系统 (h)液相有转沸点的部分互溶系统 (i) 液相完全不互溶的系统图6-3 二组分系统恒压下的典型气液相图(2)液-固系统相图: 通常忽略压力的影响而只考虑t -x 图。
第六章相平衡(一)炼锌的工业过程是先将锌矿石灼烧成氧化锌,再用碳还原。
假如平衡系统中锌以气态存在,试分析此平衡系统的组分数和自由度数各是多少?分析此题要求出自由度数F,需结合吉布斯相律公式,F=C-P+2,在确定其中组分数C时,必须找到此题中隐含的独立的化学反应关系式数目和化学物质浓度限制条件数目,即公式C=S-R-R′中的R和R′。
解题用碳还原氧化锌,系统达平衡时存在下列物种:ZnO(s)、Zn(g)、C(s)、CO(g)、CO2(g)所以系统中的物种数S=5。
系统中存在的独立的化学反应为ZnO(s)+C(s)=CO(g)十Zn(s)2CO(g)=CO2(g)+C(s)∴R=2从反应关系中可以看出,系统中CO和CO2中的氧均来自ZnO。
因此气相中若有一个Zn,则一定有一个O以CO或CO2的形式存在。
故此三者关系为 p(Zn)=p(CO)+2p(CO2)∴R′=l因此,平衡系统中的组分数C=S-R-R′=5-2-1-1=2该平衡系统中含有下列各相:ZnO(s) C(s) Zn(g) CO(g) CO2(g)∴P=3由相律可得系统中的自由度数F=C-P+2=2-3+2=1即系统只有一个独立可变量,在温度一定的情况下,总压力和气相组成皆有一确定的数值。
(二)试求下列各系统的自由度数,并指出独立变量是什么?⑴ 25℃时,气相中有O2和H2,并且有部分溶解在水中;⑵ NaCl(s)与它的饱和水溶液在101.325kPa下的沸点共存;⑶在101.325 kPa下,I2在液态水和四氯化碳中的分配达平衡(无固体I2存在);⑷在101.325 kPa下,H2SO4水溶液与H2SO4·2H2O(s)已达平衡。
解题⑴C=3P=2(液、气)F′=C-P+1=3-2+1=2系统中有两个独立变量,分别为H2和O2的分压。
⑵C=2P=3(固、液、气)F′=C-P+1=2-3+1=0即该系统为无变量系统。
⑶C=3P=2(水相,CCl4相)F′=C-P+1=3-2+1=2该系统的独立变量为温度和I2在水中的浓度(或I2在四氯化碳中的浓度)。
163第六章 相 平 衡一、本章小结1。
吉布斯相律F = C - P + 2F :系统的自由度数(独立变量数),是保持相平衡系统中相的数目不变的条件下,系统中可独立改变的变量(如温度、压力、组成等)的数目;P :相数,是相平衡系统中相的数目;2:表示相平衡系统只受温度、压力两个因素影响;C :组分数(或独立组分数),是足以确定相平衡系统中所有各相组成所需最少数目的独立物质数,C = S- R – R ’S :物种数,是系统中所含有的化学物质的数目;R :化学平衡数,是系统中各物种之间存在的独立的化学平衡的数目; R ’:独立限制条件数,是同一相中独立的浓度限制条件的数目. 相律说明:⑴ 相律只适用于处于热力学平衡的多相系统;⑵ 相律表达式中“2"代表温度、压力两个影响因素,对凝聚系统来说,压力对相平衡影响很小,此时相律可表示为F = C – P + 1,该自由度可称为条件自由度。
若除此之外还受其它因素(如磁场、电场、重力场等)影响,相律可表示为:F = C — P + n ,n 代表影响因素的个数. 2. 杠杆规则杠杆规则表示多组分系统两相平衡时,两相的数量之比与两相组成、系统组成间的关系。
杠杆规则示意如图6。
1。
对一定温度、压力下的A 、B 两组分系统中的α、β两相平衡,杠杆规则可表示为B B B B ()()()()w w m m w w β-α=β-α或 B B B B ()()()()w w m mw w β-α=β-α式中:w B 、w B (α)、w B (β)分别是以组分B 质量分数表示的系统组成及α、β两相的组成;m 、m (α)、m (β)分别是系统质量及α、β两相的质量。
若组分B 组成以摩尔分数x B 表示时,可运用杠杆规则计算两相的物质的量,计算式为:B B B B ()()()()x x n n x x β-α=β-α3。
相图 3。
1 相图的分类 3。
1。
1 单组分系统相图单组分系统p — T 相图(如图6。
第六章相平衡内容提要:本章系统阐述相图的基本原理并结合实际介绍了相图在无机非金属的研究和生产实践中的具体应用。
硅酸盐系统中的组分、相及相律:相——体系中具有相同物理与化学性质的均匀部分的总和称为相。
组元系统中每一个能单独分离出来并独立存在的化学均匀物质称为物种或组元。
独立组元数决定一个相平衡系统的成分所必需的最少物种(组元)数成为独立组元数。
独立组元数二物种数-独立化学平衡关系式数自由度一一在一定范围内可以任意改变而不引起旧相消失或新相产生的独立变数称为自由度。
相律数学式为:F =C - P n式中P——系统平衡时的相数;F ——独立可变数的数目即自由度;C 独立组元数即组分数;n――外界因素的独立变量。
如果外界因素只有温度和压力影响时,相律关系式为 F = C - P • 2,对于凝聚体系(不考虑压力)相律为:F二C-P T凝聚系统相图测定方法:1、淬冷法(静态法)在咼温充分保温的试样迅速掉入淬冷容器,然后用X射线、电子显微镜等对试样进行物相鉴定。
当试验点足够多,温度与组成间隔小时能获得准确的结果。
这是凝聚系统相图测定的主要方法,缺点是工作量相当大。
2、热分析法(动态法)冷却曲线法系通过测定系统冷却过程中的温度-时间曲线、并通过曲线的连续、转折或水平段出现的温度来确定相变化。
差热曲线法试用于相变热效应小的试样,其原理是将被测试样及惰性参比物放在相同热环境中,以相同速率升温,当试样有相变而产生热效应时与参比物之间产生的温差用差热电偶检测,根据差热曲线峰或谷的位置判断试样发生的相变温度。
三元系统相平衡基本原理:组成表示法:用等边三角形表示三元系统中各组成相对含量,此三角形称为组成三角形或浓度三角形。
等含量规则:平行于浓度三角形某一边的直线上的各点,都含有等量的对面顶点组元。
等比例规则:浓度三角形一顶点和对边上任一点的连线上各点的体系中其它两个组元的含量比值不变。
背向规则:如果从三个组元的混合物中不断取走C组元,那么这个系统的组成点将沿通过C的射线并朝着背离C的方向而变化。
第六章 多组分系统的相平衡我们把系统中具有相同强度状态的一切均匀部分的总体称为相,即在一个相内具有相同的强度状态,例如在纯物质的一个相内应具有相同的压力、温度等。
而具有相同成分的,强度状态相同的均匀部分,称为多组分系统。
把由强度状态不同的部分组成的系统称为非均相或多相系统,也称复相系统。
在纯物质的多相系统中,处于平衡的各相的温度和压力都是相同的,例如我们所熟知的处于平衡中的液态水与水蒸气就是这样。
但在多组分的多相系统中,当系统内部处于平衡时,除各相温度和压力必须相同外,还应具备其他附加条件,这是在本章中将要研究的。
和前面一样,这里所讨论的系统将不考虑表面作用,以及其它外势场如电场或磁场等的影响,固体不变形。
此外,系统内也不发生化学反应。
6-1 多相系统的热力性质由前可知,一个包含r 个组分的均勾相,如果它们在温度T 和压力p 时处于热平衡和力平衡状态,那么自由焓可表成式1ri i G n μ=∑, 其中,,ji i T P n G n μ⎛⎫∂= ⎪∂⎝⎭ 式中,每个化学势都是T 、p 和相应组分的摩尔分数的函数。
如果这个相内有,,idT dP dn 微小变化时,则相应的自由焰的变化将如下式所示∑++-=ri i dn u vdp sdT dG 1若有一个包含ϕ个相的多相系统,各相都是各自均匀比而且都处于均匀的温度T 和压力p 下,则此多相系统的总自由焓G 将是所有各相的自由始之相,即(1)(1)(2)(2)()()111rrri ii ii i G n n n ϕϕμμμ=++⋅⋅⋅+∑∑∑如果系统内发生一无限小的过程,过程中所有各相都有温度变化dT 和压力变化dP ,则自由焓的变化将为(1)(1)(1)(1)(2)(2)(2)(2)()()()()i i i i i i dG S dT V dP dn S dT V dP dn S dT V dP dn ϕϕϕϕμμμ=-++-++-⋅⋅⋅-++∑∑∑因为熵和容积为广延量,所以多相系统S,V 为各相之和(1)(1)(2)(2)()()i i i i i i dG SdT VdP dn dn dn ϕϕμμμ=-++++⋅⋅⋅+∑∑∑在一个多相系统中,平衡的问题在于找出备相处于化学平衡时在各化学势之间应存在的方程或方程组。