第六章 相平衡(2)
- 格式:ppt
- 大小:727.00 KB
- 文档页数:36
第六章相平衡§6.1 相律(1)相相:体系中物理性质和化学性质完全均匀的部分称为相。
相与相之间的界面称为相界面。
相数用符号P(或Φ)表示。
1、气相体系中无论有多少种气体存在,只认为是一相,即P=1。
2、液相由于不同种类液体互溶程度不同,体系中可以有一相、两相或三相(很少出现),即P=1,2,3。
3、固相固溶体:不同种类固体若以分子程度大小分散混合形成的物质称为固体溶液,简称固溶体。
固溶体为一相,即P=1。
非固体溶液有几种固体算几相。
(2)物种数与组分数1、物种数体系中含有化学物质的种类数称物种数,用S表示。
2、组分数平衡体系中各相组成所需的最少独立物种数称组分数,用C表示。
注意:组分数与物种数不同,体系中有几种物质,物种数就是多少,但组分数C ≤ S 。
如果体系中各物质之间没有化学反应,则C = S 。
如果体系中各物质之间有化学反应,则C = S–R 。
R —独立化学平衡数如果体系中各物质之间有浓度比例限制,则C = S–R' 。
R'—独立浓度限制数(关系数)如果体系中各物质之间既有化学反应又有浓度比例限制,则:C = S–R–R'注意:独立浓度限制数只有在同一相中才可使用。
例如:CaCO3 = CaO + CO2S=3,R=1,R'=0C=3-1-0=2(3)自由度自由度:在相平衡物系中能够独立改变的强度性质的数目称自由度,用f 表示。
注意:独立变量的任意改变要求不能导致物系中相数发生变化。
例如:T指定T指定T和PP可任意改变P不能任意改变均不能任意改变f = 2 f = 1 f = 0=25℃ t=0.0098℃P=23.69 mmHg P=4.578 mmHg (4)相律相律:平衡体系中,组分数C、相数P及自由度f之间的相互关系称为相律。
表达式:f = C – P + nn —影响体系平衡状态的外界因素的数目,通常为温度和压力。
通常情况:f = C – P + 2推导过程:设某一平衡物系有C个组分,P个相,且C个组分在每一个相中均存在,此时:对于一个相 f = C –1对于所有相 f = P(C –1)因为平衡时各相的温度、压力相同,则:f = P(C –1)+ 2由于每一个组分在每一个相中的化学位均相等,即:)P (1)3(1)2(1)1(1μ==μ=μ=μ (P –1 个关系式) )P (2)3(2)2(2)1(2μ==μ=μ=μ (P –1 个关系式) ┆ ┆ ┆ ┆)P (C)3(C )2(C )1(C μ==μ=μ=μ (P –1 个关系式) 共有 C (P –1)个关系式。
第六章 相平衡指出下列平衡系统中的组分数C ,相数P 及自由度数F 。
(1) I 2(s)与其蒸气成平衡;(2) MgCO 3(s)与其分解产物MgO(s)和CO 2(g)成平衡;(3) NH 4Cl(s)放入一抽空的容器中,与其分解产物NH 3(g)和HCl (g) 成平衡; (4) 取任意量的NH 3(g)和H 2S (g)与NH 4HS(g)成平衡;(5) 过量的NH 4HCO 3(s)与其分解产物NH 3(g),H 2O(g)和CO 2(g) 成平衡; (6) I 2作为溶质在两不互溶液体H 2O 和CCl 4中达到分配平衡(凝聚系统)。
解:(1)C =1,P =2,21F C P =-+=;(2)C =2,P =3,21F C P =-+=; (3)C =1,P =2,21F C P =-+=; (4)C =2,P =2,22F C P =-+=; (5)C =1,P =2,21F C P =-+=; (6)C =3,P =2,12F C P =-+=。
常见的Na 2CO 3(s)水合物有Na 2CO 3•H 2O (s),Na 2CO 3•7H 2O(s)和 Na 2CO 3•10H 2O (s) (1)下,与Na 2CO 3水溶液及冰平衡共存的水合物最多能有几种 (2)20℃时,与水蒸气平衡共存的水合物最多能可能有几种 解: S =5,R =3,R '=0,C =SR R '=2,F =C P +1=3P ,F mix =0,P max =3;(1)已有两相(水溶液、冰),只能有一种水合物与其共存; (2)已有一相(水蒸气),有二种水合物与其共存。
A-B 二组分液态部分互溶系统的液-固平衡相图如附图所示,试指出各个项区的平衡关系,各条线所代表的意义,以及三相线所代表的平衡关系。
解:单相区:1:A 和B 的混合溶液l ;二相区:2:l 1+ l 2;3:l 2+ B(s);4:l 1+ A(s); 5:l 1+ B(s);6:A(s)+B(s) 各条线代表的意义:LJ :A 的凝固点降低曲线; JM :B 的凝固点降低曲线;A BL MNOUVIJK123456NV :B 的凝固点降低曲线; MUN :液液相互溶解度曲线。
第六章相平衡§6-1 相律1.基本概念(1)相和相数相:系统中物理性质和化学性质完全相同的均匀部分称为相,系统中相数目为相数。
相数用“P”表示。
相的确定:气体:无论有多少种物质都为一相液体:根据相互的溶解性可为一相、二相、三相固体:由固体的种类及晶型决定(固熔体除外)(2)自由度和自由度数自由度:能够维系系统原有相数,而可以独立改变的变量叫自由度,这种变量的数目叫做自由度数,用“F”表示。
说明:a)在一定范围内,任意改变F不会使相数改变。
b)自由度数和系统内的物种数和相数有关。
2.相律物种数:系统中所含独立物质的数目,用“S”表示。
依据:自由度数=总变量数-非独立变量数=总变量数-方程式数相律表达式:F = C – P + 2式中C = S –R- R’称组分数R 独立反应的方程式数R’独立限制条件3.几点说明(1) 每一相中均含有S种物质的假设,不论是否符合实际,都不影响相律的形式。
(2) 相律中的2表示整体温度、压强都相同。
(3) F = C – P + 2是通常的形式。
(4) 凝聚相系统的相律是F = C – P + 1§6.2单组分系统相图相图:表示相平衡系统的组成与温度、压力之间的图形。
单组分系统一相:P=1 则F=1-1+2=2(T,P)双变量系统二相:P=2 则F=1-2+2=1(T或P)单变量系统三相:P=3 则F=1-3+2=0 无变量系统1.水的相平衡实验数据由数据可得:(1)水与水蒸气平衡,蒸气压随温度的升高而增大;(2)冰与水蒸气平衡,蒸气压随温度的升高而增大;(3)冰与水平衡,压力增大,冰的熔点降低;(4)在0.01℃和610Pa下,冰、水和水蒸气共存,三相平衡。
2. 水的相图单相区:液态水,水蒸气,冰双相线:OA —液固共存线,冰的熔点曲线OB —气固共存线,冰的饱和蒸气压曲线OC —气液共存线,水的饱和蒸气压曲线三相点:冰、水和水蒸气共存相图的说明(1) 冰在熔化过程中体积缩小,故水的相图中熔点曲线的斜率为负,但大多数物质熔点曲线的斜率为正。
第六章 相平衡指出下列平衡系统中的组分数C ,相数P 及自由度F 。
(1) I 2(s)与其蒸气成平衡;(2) CaCO 3(s)与其分解产物CaO(s)和CO 2(g)成平衡;(3) NH 4HS(s)放入一抽空的容器中,并与其分解产物NH 3(g)和H 2S(g)成平衡; (4) 取任意量的NH 3(g)和H 2S(g)与NH 4HS(s)成平衡。
(5) I 2作为溶质在两不互溶液体H 2O 和CCl 4中达到分配平衡(凝聚系统)。
解: (1)C = 1, P = 2, F = C – P + 2 = 1–2 + 2 = 1. (2)C = 3–1 = 2, P = 3, F = C –P + 2 = 2–3 + 2 = 1. (3)C = 3–1–1 = 1, P = 2, F = C –P + 2 = 1–2 + 2 = 1. (4)C = 3–1 = 2, P = 2, F = C –P + 2 = 2–2 + 2 = 2. (5)C = 3, P = 2, F = C –P + 1 = 3–2 + 1 = 2.已知液体甲苯(A )和液体苯(B )在90℃时的饱和蒸气压分别为=和。
两者可形成理想液态混合物。
今有系统组成为的甲苯-苯混合物5mol ,在90 ℃下成气-液两相平衡,若气相组成为求:(1) 平衡时液相组成及系统的压力p 。
(2) 平衡时气、液两相的物质的量解:(1)对于理想液态混合物,每个组分服从拉乌尔定律,因此(2)系统代表点,根据杠杆原理mol.n mol .n n )..(n )..(.n n n )x x (n )x y (l g l g g l l l ,B o ,B g o ,B g ,B 7843216125030304556050==-=-=+-=-单组分系统的相图示意如右图。
试用相律分析图中各点、线、面的相平衡关系及自由度。
已知甲苯、苯在90℃下纯液体的饱和蒸气压分别为kPa和kPa。
第六章相平衡6.1指出下列平衡系统中的组分数C,相数P及自由度F。
(1)I2(s)与其蒸气成平衡;(2)CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡;(3)NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡;(4)取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡。
(5)I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。
解:(1)C = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(2)C = 3 – 1 = 2, P = 3, F = C–P + 2 = 2 – 3 + 2 = 1.(3)C = 3 – 1 – 1 = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(4)C = 3 – 1 = 2, P = 2, F = C–P + 2 = 2 – 2 + 2 = 2.(5)C = 3, P = 2, F = C–P + 1 = 3 – 2 + 1 = 2.6.2已知液体甲苯(A)和液体苯(B)在90 C时的饱和蒸气压分别为=和。
两者可形成理想液态混合物。
今有系统组成为的甲苯-苯混合物5 mol,在90 C下成气-液两相平衡,若气相组成为求:(1)平衡时液相组成及系统的压力p。
(2)平衡时气、液两相的物质的量解:(1)对于理想液态混合物,每个组分服从Raoult定律,因此(2)系统代表点,根据杠杆原理6.3单组分系统的相图示意如右图。
试用相律分析途中各点、线、面的相平衡关系及自由度。
解:单相区已标于图上。
二相线(F = 1):三相点(F = 0):图中虚线表示介稳态。
6.4已知甲苯、苯在90 ︒C下纯液体的饱和蒸气压分别为54.22 kPa和136.12 kPa。
两者可形成理想液态混合物。
取200.0 g甲苯和200.0 g苯置于带活塞的导热容器中,始态为一定压力下90 ︒C的液态混合物。