圆、圆柱、圆锥练习题
- 格式:doc
- 大小:214.43 KB
- 文档页数:2
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
圆柱与圆锥培优题一、圆柱与圆锥1.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。
(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?【答案】(1)解:40cm=0.4m3.14×0.4×2.5=3.14(m2)答:做一节烟囱一共需要铁皮3.14平方米。
(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)答:一节烟囱中最多可以容纳废气0.314立方米。
【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。
据此代入数据作答即可。
2.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。
这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14×6×5=94.2(cm²)答:装饰圈的面积是94.2cm2。
【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。
3.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?【答案】解:沙堆的体积: ×3.14×52×1.8= ×3.14×25×1.8=47.1(立方米)沙堆的重量:1.7×47.1≈80.07(吨)答:这堆沙约重80.07吨。
【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。
4.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?【答案】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米。
小学六年级下学期圆柱与圆椎专项测试题集一一、单选题1、下面各容器底面积相同,盛水的高度也相同,分别把“克盐”(>0)全部溶解在各容器的水中,含盐率最高的是[ ] A、B、C、D、2、底面积和高分别相等的圆柱和圆锥,圆锥的体积是15立方分米,圆柱的高是5分米,它们的底面积都是[ ]A、3平方分米B、6平方分米C、9平方分米D、45平方分米3、体积相等的圆柱与圆锥,如果它们的底面积比是3:4,则它们的高之比是[ ]A、3:4B、4:3C、9:4D、4:94、用一块长25.12cm、宽18.84cm的长方形铁片,配上半径□的圆正好可以做成一个圆柱形容器。
□内应填[ ]A、5cmB、1cmC、3cm5、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的[ ]A、2倍B、3倍C、D、6、圆柱的体积与圆锥的体积相等,已知圆柱的高是圆锥高的,那么圆柱的底面积与圆锥的底面积的比是[ ]A、3∶2B、2∶1C、2∶3D、1∶27、一个圆柱和一个圆锥底面周长的比为2∶3,它们的体积比为7∶4。
圆锥与圆柱的高的比是[ ]A、21∶8B、21∶16C、16∶218、圆柱的高扩大2倍,底面半径不变,圆柱的体积就扩大[ ]A、2倍B、4倍C、6倍二、填空题1、把一个棱长和为24dm的正方体削成一个体积最大的圆柱体。
圆柱体积是()dm3,如果再将圆柱削成一个最大的圆锥体,则削去圆柱体积的()dm3。
2、王丽新买了一支净含量为45立方厘米的牙膏,牙膏圆形出口的直径是6毫米,王丽早晚各刷一次牙,每次挤出的牙膏长约2厘米,这支牙膏估计能用()天。
(取π=3,结果保留整数)3、一个圆柱体,已知高每增加1厘米,它的侧面就增加31.4平方厘米,如果高是16厘米,它的体积是()立方厘米。
4、自来水管的内径是2厘米,水管内水的流速是每秒8厘米,一位阿姨去水管洗手,走时忘记关水龙头。
5分钟浪费()升水。
(π取3)5、把一个底面半径2厘米、高1.5厘米的圆柱形钢锭,铸成底面积大小和高均不变的圆锥形钢锭,圆柱形钢锭的体积是()平方厘米,圆锥形钢锭的体积是()平方厘米。
体积圆练习题体积是几何学中的一个重要概念,用来描述一个立体体积的大小。
圆是几何中常见的形状,具有许多特点和性质。
在本篇文章中,我们将探讨一些与体积和圆相关的练习题。
练习题1:计算圆柱体的体积已知一个圆柱体的底面半径为3cm,高度为5cm,求解其体积。
解析:圆柱体的体积公式为V = π * r^2 * h,其中V表示体积,π为圆周率(约等于3.14),r为底面半径,h为高度。
代入已知数据,可得V = 3.14 * 3^2 * 5 = 141.3cm^3。
因此,圆柱体的体积为141.3立方厘米。
练习题2:计算圆锥体的体积已知一个圆锥体的底面半径为4cm,高度为6cm,求解其体积。
解析:圆锥体的体积公式为V = (1/3) * π * r^2 * h,其中V表示体积,π为圆周率(约等于3.14),r为底面半径,h为高度。
代入已知数据,可得V = (1/3) * 3.14 * 4^2 * 6 = 100.48cm^3。
因此,圆锥体的体积为100.48立方厘米。
练习题3:计算球体的体积已知一个球体的半径为2.5cm,求解其体积。
解析:球体的体积公式为V = (4/3) * π * r^3,其中V表示体积,π为圆周率(约等于3.14),r为球体的半径。
代入已知数据,可得V = (4/3) * 3.14 * 2.5^3 = 65.45cm^3。
因此,球体的体积约为65.45立方厘米。
练习题4:计算复杂立体的体积已知一个立方体的边长为3cm,内部被一个半径为2cm的球体空心,求解该复杂立体的体积。
解析:首先计算立方体的体积,体积公式为V = a^3,其中V表示体积,a为边长。
代入已知数据,可得V = 3^3 = 27cm^3。
立方体的体积为27立方厘米。
然后计算球体的体积,球体的体积公式为V = (4/3) * π * r^3,其中V表示体积,π为圆周率(约等于3.14),r为球体的半径。
代入已知数据,可得V = (4/3) * 3.14 * 2^3 = 33.493cm^3。
人教版六年级下册《圆柱圆锥》小学数学-有答案-单元测试卷一、圆柱和圆锥1. 一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2. 做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?3. 压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?4. 大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的侧面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?5. 一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?6. 把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7. 将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体,这个物体的表面积是多少平方米?8. 一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?9. 一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)10. 一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?11. 一个圆柱形量筒,底面半径是5cm,把一块圆锥形铁块从量筒里取出后水面下降3cm.这块铁块的体积是多少立方厘米?12. 把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?13. 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?14. 砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?15. 一堆圆锥形黄沙,底面周长是25.12m,高是1.5m,每立方米黄沙重1.5吨,这椎黄沙重多少吨?16. 一个无盖的圆柱形水桶,底面直径10厘米,高20厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)17. 大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?18. 一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04米厚,可以铺多少米长?19. 一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
人教版数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)第3单元《圆柱圆锥》单元测试卷一、填空题(共9题;共20分)1.圆柱的两个底面是两个大小________的圆,如果一个圆柱的底面周长和高相等,那么它的侧面展开是一个________。
2.圆柱的侧面展开图是________形,圆锥的侧面展开图是________形。
3.圆柱有________条高,圆锥有________高.4.一个圆锥的体积是m3.与它等底等高的圆柱的体积是________ m3;如果圆锥的高是m,那么它的底面积是________ m2。
5.把一个圆柱削成一个最大的圆锥体,已知削去的部分是6立方分米,这个圆柱体的体积是________。
6.一个圆柱体和一个圆锥体的底面积相等,它们的体积比是4 :3,它们的高度比是________。
7.一个圆锥体的体积是15立方米,高是6米,它的底面积是________平方米。
8.把一个圆柱的底面半径扩大3倍,高不变,它的侧面积扩大________倍。
9.如图是一个圆柱体的侧面展开图,原来这个圆柱的体积可能是________或________ cm3.二、单选题(共5题;共10分)1.下面图形绕轴旋转一周,形成圆锥的是( )。
A. B. C. D.2.下图不能用“底面积×高”计算体积的是( )。
A. B. C. D.3.把圆柱体的侧面展开.不可能得到( )。
A. 平行四边形B. 长方形C. 正方形D. 梯形4.一个圆锥的底面半径扩大到原来的2倍,高也扩大到原来的2倍,它的体积扩大到原来的( )倍。
A. 8B. 6C. 45.压路机滚筒滚动一周能压多少路面是求滚筒的()。
A. 表面积B. 侧面积C. 体积D. 容积三、判断题(共5题;共10分)1.圆柱和圆锥都有无数条高。
( )2.一个圆柱的底面半径是r,高是2πr,那么它的侧面沿高展开是正方形。
()3.从一个圆锥高的处切下一个圆锥,这个圆锥的体积是原来体积的。
圆柱和圆锥复习提高题一、解决问题。
1.用铁皮做一个底面半径是20cm,高是50cm的圆柱形无盖水桶,至少需要多少平方米的铁皮 ?2.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米 ?3.小明有一个百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,小明这个百宝箱的表面积是多少 ?4.一个圆柱的体积是602.88m3,底面周长是50.24m,这个圆柱的高是多少米?5.一瓶2.5升的果汁,倒入底面直径为4cm,高为5cm的圆柱形杯子里,可以倒几杯?(得数保留整数)6.爸爸要用一块面积为282.6dm2的铁皮,做一个底面直径为1.5dm的通风管,所做的通风管最长是多少 ?7.自来水管的内半径是2cm,管内水的流速是每秒20cm。
一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上,请你算一算,大约浪费了多少升水 ?8.如图,想想办法,你能否求出它的体积?( 单位:分米) (42题)9、亮亮生日那天,爸爸为亮亮买了一个圆柱形蛋糕,已知蛋糕的底面直径是32cm,高l2cm,这个蛋糕的体积是多少立方分米?10、一个圆柱形侧面展开后上一个正方形,已知这个正方形的高是18.84厘米,这个圆柱形的体积是多少?11、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?12的体积是多少立方分米?13、在直径0.8米的水管中,水流速度是每秒2米,那么5分钟流过的水有多少立方米?14、把一个棱长是40厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?15、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块,每块的体积和表面积各是多少?16、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。
圆柱和圆锥的体积分别是多少?2742317、一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆柱的体积是多少立方厘米?18、一个圆柱的底面周长是18.84厘米,沿着底面直径将它切成相等的两半,表面积增加了180平方厘米,原来这个圆柱的表面积和体积各是多少?19、把一个半径为10厘米的圆锥形钢材浸没在一只底面半径是30厘米的圆柱形水桶里,当钢材从水桶中拿出,桶里的水面下降了1厘米。
第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4;π同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2.所以选C.π答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为__________cm 2.解析:如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。
六年级(下)数学素质测试卷(圆柱和圆锥)一、填空:(24分)1.圆柱的上、下两个面叫做_________,他们是_________的两个圆,两个底面之间的距离叫做高.2.圆锥的底面是一个_________,从圆锥的顶点到底面_________的距离是圆锥的高.3.等底等高的圆柱和圆锥,它们的体积一共是48立方分米,那么圆锥体积是_________立方分米.4.3.2立方米=_________立方分米;500毫升=_________升.5.一个圆锥体的底面半径是3分米,高是10分米,它的体积是_________立方分米.6.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是_________平方厘米.7.圆锥体底面直径是6厘米,高3厘米,体积是_________立方厘米.8.一个无盖的圆柱形铁水桶,高是0.3米,底面直径是0.2米,做10个这样的水桶至少要用铁皮平方米.9.(2分)如果一个圆柱体的侧面展开是个正方形,则这个圆柱的底面周长和高_________.10.(2分)一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是____立方分米.11.(2分)把一段圆钢切削成一个最大的圆锥,切削掉的部分是6千克,这个圆锥的重量是_________千克.12.(2分)一个圆柱形木料长16分米,半径是3分米,把它锯成两段后,表面积增加了_________分米.二、判断题:(10分)13.底面积相等,体积也相等的圆柱和圆锥,圆锥的高是圆柱的3倍._________.14.长方体、正方体、圆柱和圆锥的体积都可以用“底面积×高”计算._________.15.圆锥的体积是圆柱体积的._________.16.(长方形一边为轴,旋转一周形成的图形是一个圆柱._________.X k B 1 . c o m17.)圆锥的底面半径扩大为原来的3倍,它的体积就扩大为原来体积的9倍._________.三、选择(10分)18.求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积19.一个圆柱的高是7.5分米,底面半径是10厘米,它的体积是()立方厘米.A.2355 B.23550 C.2.355 D.0.235520.一个圆柱体铁块可以浇铸成()个与它等底等高的圆锥形铁块.A.1B.2C.3D.421.圆锥的体积是120立方厘米,高是10厘米,底面积是()平方厘米.A.12 B.36 C.4D.822.把一圆柱形木料锯成两段,增加的底面有()个。
圆、圆柱、圆锥练习题
1、圆规两脚间距离是6厘米,这时用它画成的圆的直径是( )厘米。
2、圆中最长的线段是圆的( )。
3、一个圆柱底面半径是3厘米,高5厘米,侧面积是( )平方厘米,表面积是( )平 方厘米,体积是( )立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
4、填表格
5、看图填空。
(单位:厘米)
r=( )cm r=( )cm r=( )cm 长方形的长 d=( )cm d=( )cm d=( )cm 是( )cm
6、下面图形以竖线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。
7、求下面形体的表面积和体积。
(单位:厘米) 8、求下面形体的体积。
(单位:米)
9、求图中阴影部分的面积。
(
单位:厘米) 10、求图中阴影部分的面积。
半径(r ) 直径(d ) 周长(c ) 面积(s )
3 4 31.4
名 称 底面半径 底面直径 高 表 面 积
体 积
圆 柱 6cm 5 cm 圆 柱 20 cm 8 cm 圆 锥 5 dm 12dm 圆 锥
6m
7 m
242厘5厘
综合题
1、一个圆形茶盘的直径是40厘米,它的周长和面积各是多少?
2、一个圆形观赏鱼池,周长是251.2米,这个鱼池的占地面积是多少平方米?
3、在一张周长为24厘米的正方形硬纸板上,剪一个最大的圆,这个圆的周长和面积各是多少?
4、已知圆柱的底面直径是4厘米,高是2厘米,侧面展开图的长是多少厘米,宽是多少厘
米。
5、把一个圆柱的侧面展开得到一个正方形,这个圆柱底面半径是3分米,圆柱的高是多少
分米。
6、一个没有盖的圆柱形铁罐,底面直径是10厘米,高是4厘米,做这个铁罐要用铁皮多少
平方厘米?(得数保留整十平方厘米)
7、一台压路机,前轮直径1米,轮宽1.2米,工作时每分滚动15周。
(1)这台压路机工作1分前进了多少米?
(2)工作1分前轮压过的路面是多少平方米?
8、一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米?
9、工地上运来一堆圆锥形的沙,底面积是1.8平方米,高是0.9米。
这些沙有多少立方米?
如果每立方米沙重1.7吨,这些沙有多少吨?
10、圆柱形无盖铁皮水桶的高2.5分米,底面直径是4分米。
做这样的一双水桶要用铁皮多少平方分米?
11、一只圆柱形的木桶,底面直径5分米,高8分米,在这个木桶外加一条铁箍,接头处重叠 0.3分米,铁箍的长是多少?这个木桶的容积是多少?
12、一对圆柱形水桶,底面半径是1.5分米,高40厘米,如果水桶里盛的水只占水桶容积
的95%,这时水桶约盛水多少千克?
13、一个圆柱形水桶,底面半径是20厘米,里面盛有水,现将一个底面周长为62.8厘米的
圆锥体铁块沉入水中,水面上升了8厘米,这圆锥体的铁块高多少厘米?。