电磁场理论基础 第4章
- 格式:ppt
- 大小:2.11 MB
- 文档页数:158
电磁场理论基础磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。
变化的磁场能够激发电场,变化的电场也能够激发磁场。
所以,要学习电磁流体力学必须熟悉电磁场理论。
1. 电场基本理论(1) 电荷守恒定律在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。
这就是电荷守恒定律。
电荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有等量电荷进入(或离开)该系统。
(2) 库仑定律1221202112ˆ4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之间的作用力与他们所带电荷的电量成正比,与他们之间的距离r 平方成反比,作用的方向沿他们之间的连线,同性电荷为斥力,异性电荷为引力。
ε0为真空介电常数,一般取其近似值ε0=8.85⨯10-12C •N -1•m -2。
ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。
库仑反比定律也由越来越精确的实验得到验证。
目前δ<10-16。
库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。
Charles Augustin de Coulomb 1736-1806 France(3) 电场强度 00)()(qr F r E =(V ·m -1)真空中电荷与电荷之间相互以电场相互发生作用。
若试探电荷q 0在电场r 处受电场力为F 0(r ), 则电 场强度为E (r )。
(4) 静电场的高斯定理 ∑⎰⎰=⋅)(01S in Sq d εS E由于静电场的电力线起始于正电荷,终止于负电荷, 不会相交也不会形成封闭曲线,这就决定通过静电场内 某一封闭曲面S 的电通量为此封闭曲面所包围的电荷的01ε倍。
电磁场理论基础磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。
变化的磁场能够激发电场,变化的电场也能够激发磁场。
所以,要学习电磁流体力学必须熟悉电磁场理论。
1. 电场基本理论(1) 电荷守恒定律在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。
这就是电荷守恒定律。
电荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有等量电荷进入(或离开)该系统。
(2) 库仑定律1221202112ˆ4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之间的作用力与他们所带电荷的电量成正比,与他们之间的距离r 平方成反比,作用的方向沿他们之间的连线,同性电荷为斥力,异性电荷为引力。
ε0为真空介电常数,一般取其近似值ε0=8.85⨯10-12C •N -1•m -2。
ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。
库仑反比定律也由越来越精确的实验得到验证。
目前δ<10-16。
库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。
Charles Augustin de Coulomb 1736-1806 France(3) 电场强度 00)()(qr F r E =(V ·m -1)真空中电荷与电荷之间相互以电场相互发生作用。
若试探电荷q 0在电场r 处受电场力为F 0(r ), 则电 场强度为E (r )。
(4) 静电场的高斯定理 ∑⎰⎰=⋅)(01S in Sq d εS E由于静电场的电力线起始于正电荷,终止于负电荷, 不会相交也不会形成封闭曲线,这就决定通过静电场内 某一封闭曲面S 的电通量为此封闭曲面所包围的电荷的01ε倍。
2电磁场与电磁波课后·训练提升基础巩固一、选择题(第1~3题为单选题,第4~6题为多选题)1.电磁波由真空进入介质中时,其波速变为原来的一半,则波长变为原来的()A.一半B.两倍C.不变D.无法判断,频率不变。
由v=λf知v减半,则λ减半。
2.在真空中传播的电磁波,当它的频率增大时,它的传播速度及其波长的变化情况是()A.速度不变,波长减小B.速度不变,波长增大C.速度减小,波长变大D.速度增大,波长不变3×108m/s,与频率无关;由c=λf,波速不变,频率增大,波长减小,故选项A正确,B、C、D错误。
3.下列关于电磁波的说法正确的是()A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故选项B正确。
电磁波是横波,能发生偏振现象,故选项C错误。
电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故选项A、D错误。
4.下列说法正确的是()A.电荷的周围一定有电场,也一定有磁场B.均匀变化的电场在其周围空间一定产生磁场C.任何变化的电场在其周围空间一定产生变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,不产生磁场,运动的电荷周围的电场是变化的,所以产生磁场,选项A错误。
由麦克斯韦理论判断选项B、D正确,C错误。
5.按照麦克斯韦的电磁场理论,以下说法正确的是()A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场B.变化的电场周围产生磁场,变化的磁场周围产生电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场:变化的电场产生磁场,变化的磁场产生电场。
对此理论全面正确理解为:不变化的电场周围不产生磁场;变化的电场可以产生变化的磁场,也可产生不变化的磁场;均匀变化的电场产生稳定的磁场;周期性变化的电场产生同频率的周期性变化的磁场。
学习目标:1.[科学态度与责任]了解麦克斯韦电磁场理论的基本内容以及电磁波的预言。
2.[科学探究]了解赫兹发现电磁波过程,体会电磁场的物质性。
3.[科学思维]理解LC回路中振荡电流的产生过程,会求LC电路的周期与频率。
阅读本节教材,回答第83页“问题”并梳理必要知识点。
教材P83问题提示:根据麦克斯韦电磁理论,利用LC振荡电路可以产生电磁波。
一、麦克斯韦的预言1.变化的磁场周围会产生电场麦克斯韦提出,在变化的磁场周围会激发出一种电场——涡旋电场(也叫感生电场,如图所示),不管有无闭合电路,变化的磁场激发的涡旋电场总是存在的。
变化的磁场周围产生涡旋电场2.变化的电场周围会产生磁场麦克斯韦从场的观点得出,即使没有电流存在,只要空间某处的电场发生变化,就会在其周围产生涡旋磁场,如图所示。
变化的电场产生涡旋磁场示意图3.电磁波(1)交变的电场和交变的磁场相互联系在一起,就会在空间形成一个统一的、不可分割的电磁场。
这种在空间交替变化并传播出去的电磁场就形成了电磁波。
(2)自然界存在许多不同频率的电磁波,并且它们都以光速在空间传播,可见光只不过是人眼可以看得见的,频率范围很小的电磁波。
二、赫兹实验1.赫兹实验原理图,如图所示:赫兹实验原理示意图2.实验现象:当感应线圈两极间有火花跳过时,环的间隙处也有火花跳过。
3.现象分析:火花在A、B间来回跳动时,在周围空间建立了一个迅速变化的电磁场,这种变化的电磁场以电磁波的形式在空间传播。
当电磁波经过接收器时,导致接收器产生感应电动势,使接收器两球间隙处产生电压,当电压足够高时,两球之间产生火花放电现象。
4.实验结论:赫兹证实了电磁波的存在。
5.实验意义:证明了麦克斯韦的预言,为麦克斯韦的电磁场理论奠定了坚实的实验基础。
三、电磁振荡1.振荡电流:大小和方向都周期性变化的电流。
2.振荡电路:产生振荡电流的电路。
由电感线圈L和电容器C所组成的一种基本的振荡电路为LC 振荡电路,如图所示。
第四章第2、3节电磁场与电磁波、无线电波的发射和接收教学设计一、教材分析电磁场的形成、电磁波的产生以及发射和接收是这两节的知识主干,在物理观念的形成上作为重点落实。
由于LC回路产生电磁振荡不如机械振动直观,要引导学生结合教材图示分析理解,并通过多媒体手段和实验演示等讲这一过程形象化,帮助学生在物理思维的培养上再上一个台阶。
电磁场的概念和麦克斯韦电磁理论是电磁学的核心内容,但是中学对电磁场理论是要求初步了解。
教材突出了理论的核心内容是:变化的电场产生磁场,变化的磁场产生电场,交替产生的电场和磁场传播出去形成电磁波。
能够动手实验的要学生亲自动手培养学生的科学探究能力。
无线电波的发射和接收涉及概念较多,可以结合图表、思维导图、流程图等多种手段,或者利用运送货物的装卸等流程来帮助学生理解调制、调谐、解调等一系列名次含义。
对电磁波的发现以及无线电波的应用,可以介绍赫兹和马可尼等人的不懈努力以及科技成果,落实培养学生的科学态度与责任。
二、学情分析学生在学习电磁场理论时,已经具备:静电场的知识、电流的产生和电流的磁效应知识、电磁感应现象等知识;接触并了解过电磁波的接收(半导体收音机等)或发射的机械设备。
学生对电磁场的知识掌握还不够全面和系统化,要更好的创设情境,精心组织素材,进一步培养学生的抽象思维和创造思维能力。
三、素养目标1.了解电磁场的形成、电磁波的产生。
2.了解电磁波的发射、传播和接收过程,知道无线电通信的基本原理。
3.能正确区分调制、调幅、调频、调谐和解调等概念。
4.结合实际生活,说出无线电通信在生活中的应用。
四、教学重点、难点1.教学重点:电磁场的形成、电磁波的产生、无线电的传播过程。
2.教学难点:无线电波传播的各种概念辨析。
五、教学方法实验演示法、类比分析法.六、教学过程同学们请看,这是电视台发射电视信号的信号塔效果图。
那么,为什么要建高耸入云的发射塔呢?这是为了接受信号,也就是电磁波。
接下来我们就来学习一下关于电磁波以及电磁波的发射和接收的相关知识。
第四章电磁振荡和电磁波(练基础)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分。
)1.下列说法正确的是( )A .变化的磁场不能产生电场B .变化的电场一定能产生电磁波C .电磁波能在真空中传播D .麦克斯韦证实了电磁波的存在2.我国500m 口径球面射电望远镜(F AST )如图所示,它可以接收来自宇宙深处的电磁波。
关于电磁波,下列说法正确的是( )A .电磁波是纵波B .变化的电场一定产生变化的磁场C .频率越高的电磁波,在真空中传播的速度越大D .电磁波可以传递信息和能量3.如图所示,高效而环保的光催化捕蚊器采用蚊子喜爱的紫外线诱捕蚊子。
捕蚊器发射的紫外线的频率为148.010Hz ⨯,普朗克常量h 取346.610J s -⨯⋅,则下列说法正确的是( )A .紫外线可用于加热理疗B .紫外线的频率比可见光小C .该紫外线在真空中的波长为232.410m ⨯D .该紫外线能量子的能量为195.2810J -⨯4.在理想LC 振荡电路中的某时刻,电容器极板间的场强E 的方向如图所示,M 是电路中的一点。
若该时刻电容器正在充电,据此可判断此时()A.电路中的磁场能在增大B.流过M点的电流方向向左C.电路中电流正在增加D.电容器两板间的电压在减小5.2022年7月1日,庆祝香港回归祖国25周年大会隆重举行,世界各地观众都能收看到大会实况,是因为电视信号可通过卫星覆盖全球。
关于电磁波,下列说法正确的是()A.电磁波在真空中的传播速度与频率、能量有关,频率越高、能量越大,传播速度越大B.当电磁波源消失后就不能产生新的电磁波,但已发出的电磁波不会立即消失C.电磁波不能在真空中传播,且只能传递声音信号,不能传递图像信号D.香港电视台与南京电视台发射的电磁波的频率不同,但传播速度相同6.下列有关电磁波的发射、传播和接收的说法正确的是()A.电磁波遇到障碍物要发生反射,雷达就是利用电磁波这个特性工作的B.由调谐电路接收到的感应电流,是经过调制的高频电流,是我们需要的声音或图像信号C.不同波段的无线电波的传播特点不一样,有不同的用途,发射、接收所用的设备可以相同D.某同学自己绕制天线线圈,制作一个最简单的收音机,用来收听中波的无线电广播,他发现有一个频率最高的中波电台收不到,但可以接收其他中波电台。
天线原理无线电物理原始文稿:P31~P45理论上对于一个给定的衰减,层的厚度可以任意的薄,甚至只占一个FDTD网格,只要导电率足够大。
但是实际的计算表明,界面两侧间太大的导电率变化将引起反射。
在实际的计算中,PML层必须包含几个FDTD网格厚度,导电率从界面上的零逐渐增加到最外。
层的max1.5 高频近似方法前面介绍的矩量法和时域有限差分法都要求电磁场在子域或网格内具有较小的变化,即要求单元的尺寸与波长相比是一个小量。
当物体的尺寸远大于波长时,单元数将大大增加,从而得到一个超大型的矩阵,而矩阵的大小受到计算机资源的限制,因此这类方法只适合于处理最大尺寸为几个波长以下的电磁问题,从而将这类方法称为“低频近似”。
当频率很高,物理尺寸远大于波长时,必须使用其他的高频近似方法。
高频近似法有几何光学法、物理光学法、几何绕射法和物理绕射法。
几何光学法是利用涉嫌描述源的直接入射场和在两个不同媒质分界面上反射和折射(或透射)场的一种方法。
几何光学法用射线和射线管的概念解释散射和能量的传播机制,它具有物理概念清晰和计算简单的特点,能准确地计算直射场、反射场和折射场,但它不能分析和计算绕射问题。
计算抛物面天线的辐射场时,可先用几何光学法确定其口径场的分布,然后利用等效原理求辐射场。
这种方法在抛物面天线方向图的主瓣和近轴幅瓣区域可以得到比较精确的结果,但在远轴幅瓣和后向辐射范围内误差很大。
物理光学法假设散射体表面上的场是几何光学场,用散射体表面的感应电流取代散射体本身作为散射场的源,把散射场表示为散射体表面上感应面电流的积分。
物理光学法合理地估计了散射体上的电流,把散射问题变成了一个单纯的辐射问题,从而使问题大为简化,在工程中是一种重要的方法。
可用它计算抛物面的远轴幅瓣。
在物理光学法中散射体表面的感应电流是用几何光学法确定的,入射场只对散射体的照明面起作用,在阴影面上的入射场为零,散射体上的电流在照明面与阴影面交接处突然中断,这违背电流连续性原理,从而物理光学法近似也不能很好处理绕射问题。