吉大物理电磁场理论基础答案.
- 格式:doc
- 大小:325.00 KB
- 文档页数:12
第九章 电磁场理论(一)电介质和导体学号 姓名 专业、班级 课程班序号一 选择题[ C ]1. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是 (A) C A B U U U == (B) C A B U U U => (C) U U U A C B >> (D) C A B U U U >>[ D ]2. 一个未带电的空腔导体球壳内半径为R 。
在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) d q 04πε (C) R q04πε (D) )11(40Rd q-πε[ D ]3. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则(A) 0 U >U A B ≠ (B) 0 U >U A B = (C) A B U U = (D) A B U U <[ A ]4. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。
再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板位置无关 (B) 储能减少,但与金属板位置有关 (C) 储能增加,但与金属板位置无关 (D) 储能增加,但与金属板位置有关[ C ]5. C 1和C 2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C 1中插入一电介质板,则 (A) C 1极板上电量增加,C 2极板上电量减少 (B) C 1极板上电量减少,C 2极板上电量增加 (C) C 1极板上电量增加,C 2极板上电量不变(D) C 1极板上电量减少,C 2极板上电量不变二 填空题1. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 =2.0×10-8C; 另一内半径为 r 2 = 10cm 、 外半径为 r 3 = 15cm 的金属球壳B , 带电量为 q 2 = 4.0×10-8C , 两球同心放置,如图所示。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则
A.线圈中无感应电流;
B B.线圈中感应电流为顺时针方向;
C C.线圈中感应电流为逆时针方向;
D D.线圈中感应电流方向不确定。
4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心
距导线a,且a >> r。
当导线电流切断后,导线环流过电量为
5.对位移电流,有下述四种说法,请指出哪一种说法是正确的
A A.位移电流是由变化电场产生的
B B.位移电流是由变化磁场产生的
C C.位移电流的热效应服从焦耳-楞次定律
D D.位移电流的磁效应不服从安培环路定理
6.在感应电场中电磁感应定律可写成
式中E K为感应电场的电场强度,此式表明
A. 闭合曲线C 上E K处处相等
B. 感应电场是保守力场
C.感应电场的电场线不是闭合曲线
D.感应电场不能像静电场那样引入电势概念
1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问
(1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题
U A =U B
U A U B
;
三、计算题
1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角
B = B = B = kt
kt (k 为大于零的常数。
长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。
解:S B m
ρρ⋅=φLvt kt ⋅=21dt d m i φε=2
21kLvt =kLvt =方向a →b ,顺时针。
ο
60cos SB =用法拉第电磁感应定律计算电动势,不必
再求动生电动势
2. 在等边三角形平面回路ADCA 中存在磁感应强度为B 均匀磁场,方向垂直于回路平面,回路CD 段为滑动导线,它以匀速 v 远离A 端运动,并始终保持回路是等边三角形,设滑动导线CD 到A 端的垂直距离为x ,且时间t = 0 时,x = 0, 试求,在下述两种不同的磁场情况下,回路中的感应电动势和时间t 的关系。
解:常矢量==01(B B ρρθxtg x B ⋅⋅=0
S B t ρρ⋅=(φ220t
v tg B ⋅=θt v B dt d m i 203
32=-动φεε−==方向:逆时针
2. 在等边三角形平面回路ADCA 中存在磁感应强度为B 均匀磁场,方向垂直于回路平面,回路CD 段为滑动导线,它以匀速V 远离A 端运动,并始终保持回路是等边三角形,设滑动导线CD 到A 端的垂直距离为x ,且时间t=0 时,
x=0, 试求,在下述两种不同的磁场情况下,回路中的感应电动势和时间t 的关系。
S B t m ρ
ρ⋅=(φdt d m i φε−=θ
xtg x t B ⋅⋅=03
20
33
t v B =2
203t v B =-t
B B 02(ρ
ρ==0B ρ
常矢量
方向:逆时针
3.无限长直导线通过电流I ,方向向上,导线旁有长度L 金属棒,绕其一端O 在平面内顺时针匀速转动,角速度为ω,O 点至导线垂直距离r 0 , 设长直导线在金属棒旋转平面内,试求:
(1金属棒转至与长直导线平行、且O 端向下时棒内感应电动势大小和方向;
(2金属棒转至与长直导线垂直、且O 端靠近导线时棒内的感应电动势的大小和方向。
解:(d B dl
ευ=×⋅ρρρ0
(L L B dl lBdl ευω=×⋅=∫∫ρρρ220011222I B L L r µωωπ==⋅方向:O M
3.无限长直导线通过电流I ,方向向上,导线旁有长度L 金属棒,绕其一端O 在平面内顺时针匀速转动,角速度为ω,O 点至导线垂直距离r 0 , 设长直导线在金属棒旋转平面内,试求:(1金属棒转至与长直导线平行、且O 端向下时,棒内感应电动势大小和方向;
(2金属棒转至与长直导线垂直、且O 端靠近导线时,棒内的感应电动势的大小和方向。
(L L B dl Bdl ευυ=×⋅=∫∫ρρρ0002L I rdr r r µωπ=+∫0002(L
I r dr r r µωπ=⋅⋅+∫0000[ln ]2I r L L r r µωπ+=−方向:O N
4. 如图,真空中长直导线通有电流I=I=I(t I(t I(t
,有一带滑动边矩形导线框与长直导线平行共面,二者相距a ,线框滑动边与长直导线垂直,长度为b ,并且以匀速ν滑动,若忽略线框中自感电动势,开始时滑动边与对边重合。
求:(1任意时刻矩形线框内的动生电动势;(2任意时刻矩形线框内的感应电动势。
解:tdx x I S d B b a a m υπµφ∫∫+=⋅=20ρρa
b a I t +=ln
20πυµa
b
a I Bdx
b a a
+−=−=∫+ln 20πυµυε动
(ln 20I t dt
dI
a b a dt d m ++−=−=πυµφε
2. 一长直导线中通有电流I , 在其旁有一半径为R 半金属圆环ab ,二者共面,且直径ab 与直电流垂直,环心与直电流相距L ,当半圆环以速度v 平行直导线运动时,试求 (1
(1半圆环两端电势差U a -U b ; (2那端电势高?
解: a 端高。
=+直弧
εε
∫
+−=−=R
L R
L Bvdx
直弧εεR
L R L Iv −+=ln 20πµε弧。