吉大物理电磁场理论基础答案.
- 格式:doc
- 大小:325.00 KB
- 文档页数:12
第九章 电磁场理论(一)电介质和导体学号 姓名 专业、班级 课程班序号一 选择题[ C ]1. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是 (A) C A B U U U == (B) C A B U U U => (C) U U U A C B >> (D) C A B U U U >>[ D ]2. 一个未带电的空腔导体球壳内半径为R 。
在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) d q 04πε (C) R q04πε (D) )11(40Rd q-πε[ D ]3. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则(A) 0 U >U A B ≠ (B) 0 U >U A B = (C) A B U U = (D) A B U U <[ A ]4. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。
再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板位置无关 (B) 储能减少,但与金属板位置有关 (C) 储能增加,但与金属板位置无关 (D) 储能增加,但与金属板位置有关[ C ]5. C 1和C 2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C 1中插入一电介质板,则 (A) C 1极板上电量增加,C 2极板上电量减少 (B) C 1极板上电量减少,C 2极板上电量增加 (C) C 1极板上电量增加,C 2极板上电量不变(D) C 1极板上电量减少,C 2极板上电量不变二 填空题1. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 =2.0×10-8C; 另一内半径为 r 2 = 10cm 、 外半径为 r 3 = 15cm 的金属球壳B , 带电量为 q 2 = 4.0×10-8C , 两球同心放置,如图所示。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
电磁场理论基础第三版答案柯亨玉1.磁感应强度的单位是( ) [单选题] *A)T(正确答案)B)WbC)N/AD)Wb/m2.水的温度从17℃升高到100℃,用热力学温标表示,水温升高了( ) [单选题] *A)83K(正确答案)B)300KC)356KD)373K3.物体沿斜面匀速下滑,在此过程中物体的( ) [单选题] *A)机械能守恒B)机械能增加C)重力势能增加D)重力势能减少(正确答案)4.下列过程中,主要通过做功方式改变物体内能的是( ) [单选题] *A)湿衣服中的水蒸发B)水中的冰融化C)池水在阳光的照射下温度升高D)锤子敲击钉子后钉子变热(正确答案)5.直流电动机通电后,使线圈发生转动的力是( ) [单选题] *A)电场力B)磁场力(正确答案)C)万有引力D)重力6.在国际单位制中,属于基本单位的是 [单选题] *A)牛顿B)米(正确答案)C)特斯拉D) 焦耳7.电场强度的单位是 [单选题] *A) N/C(正确答案)(B) V/C(C) J/CD) T/C8.电子是原子的组成部分,一个电子带有 [单选题] *A) l.6×l0的-19次方C的正电荷(B) l.6×l0的-19次方C的负电荷(正确答案)(C) 9.l×l0的-31次方C的正电荷D) 9.l×l0的-31次方C的负电荷9.气体由无规则运动的分子组成,分子间有相互作用,因此气体的内能 [单选题] *A)仅包含分子动能B)仅包含分子势能C)与分子动能及分子势能无关D)包含分子动能及分子势能(正确答案)10.两个分子从相距很远(分子间作用力可忽略)变到很难靠近的过程中,表现为[单选题] *A)相互吸引B)相互排斥C)先排斥后吸引D)先吸引后排斥(正确答案)11.一杯水含有大量的水分子,若杯中水的温度升高,则( ) [单选题] *A)水分子的平均动能增大(正确答案)B)只有个别水分子动能增大C)抽有水分子的动能都增大D)每个水分子的动能改变量均相同12.下列物理量中,属于标量的是( ) [单选题] *A)功(正确答案)B)位移C)加速度D)电场强度13.静电场的电场线( ) [单选题] *A)可以相交B)是闭合的曲线C)起始于正电荷,终止于负电荷(正确答案)D)是点电荷在电场中运动的轨迹14.a、b和c三个带电小球,c带负电,a和b相互排斥,b和c相互吸引。
静电场1直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m,04.0==AC BC ). 解:1q 在C 点产生的场强 20114AC q E πε= 2q 在C 点产生的场强 22204q E BC πε=C 点的合场强43.2410V E m ==⨯ 方向如图2. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d R dl dE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 0000284sin sin λϕϕλϕπ===⎰⎰ 方向沿y 轴负向3.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度. 解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dlrx r x xdqdE +=+=πεσππεθcos R x = θs i n R r = θRd dl =20001sin2224E d i πσσθθεε==⎰ 4如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分L Pd EO总场强为 ⎰+π=L x d L x L q E 020)(d 4-ε()d L d q+π=043分 方向沿x 轴,即杆的延长线方向.5一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强 θεεd 24d d 20220R QR q E π=π= 按θ角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQ E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0, 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j RQ j E i E E y x202επ-=+=6边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.解:由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量 01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E x eΦ b 2N ·m 2/C“+”,“-”分别对应于右侧和左侧平面的电场强度通量平行于xOz 平面的两个面的电场强度通量 3003±=±==⋅S E S E y eΦ b 2 N ·m 2/C“+”,“-”分别对应于上和下平面的电场强度通量.xz7图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )解:两带电平面各自产生的场强分别为:()02/εσA A E = 方向如图示()02/εσB B E = 方向如图示由叠加原理两面间电场强度为()()02/εσσB A B A E E E +=+= =3×104 N/C 方向沿x 轴负方向两面外左侧()()02/εσσA B A B E E E -=-=' =1×104 N/C 方向沿x 轴负方向两面外右侧 E ''= 1×104 N/C 方向沿x 轴正方向8 一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示. 求:(1) 在球形空腔内,球心O '处的电场强度0E .(2) 在球体内P 点处的电场强度E .设O '、O 、P 三点在同一直径上,且d OP =.解:(1)利用补偿法,以O 为圆心,过O '点作一个半径为d 的高斯面。
3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则
A.线圈中无感应电流;
B B.线圈中感应电流为顺时针方向;
C C.线圈中感应电流为逆时针方向;
D D.线圈中感应电流方向不确定。
4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心
距导线a,且a >> r。
当导线电流切断后,导线环流过电量为
5.对位移电流,有下述四种说法,请指出哪一种说法是正确的
A A.位移电流是由变化电场产生的
B B.位移电流是由变化磁场产生的
C C.位移电流的热效应服从焦耳-楞次定律
D D.位移电流的磁效应不服从安培环路定理
6.在感应电场中电磁感应定律可写成
式中E K为感应电场的电场强度,此式表明
A. 闭合曲线C 上E K处处相等
B. 感应电场是保守力场
C.感应电场的电场线不是闭合曲线
D.感应电场不能像静电场那样引入电势概念
1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问
(1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题
U A =U B
U A U B
;
三、计算题
1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角
B = B = B = kt
kt (k 为大于零的常数。
长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。
解:S B m
ρρ⋅=φLvt kt ⋅=21dt d m i φε=2
21kLvt =kLvt =方向a →b ,顺时针。
ο
60cos SB =用法拉第电磁感应定律计算电动势,不必
再求动生电动势
2. 在等边三角形平面回路ADCA 中存在磁感应强度为B 均匀磁场,方向垂直于回路平面,回路CD 段为滑动导线,它以匀速 v 远离A 端运动,并始终保持回路是等边三角形,设滑动导线CD 到A 端的垂直距离为x ,且时间t = 0 时,x = 0, 试求,在下述两种不同的磁场情况下,回路中的感应电动势和时间t 的关系。
解:常矢量==01(B B ρρθxtg x B ⋅⋅=0
S B t ρρ⋅=(φ220t
v tg B ⋅=θt v B dt d m i 203
32=-动φεε−==方向:逆时针
2. 在等边三角形平面回路ADCA 中存在磁感应强度为B 均匀磁场,方向垂直于回路平面,回路CD 段为滑动导线,它以匀速V 远离A 端运动,并始终保持回路是等边三角形,设滑动导线CD 到A 端的垂直距离为x ,且时间t=0 时,
x=0, 试求,在下述两种不同的磁场情况下,回路中的感应电动势和时间t 的关系。
S B t m ρ
ρ⋅=(φdt d m i φε−=θ
xtg x t B ⋅⋅=03
20
33
t v B =2
203t v B =-t
B B 02(ρ
ρ==0B ρ
常矢量
方向:逆时针
3.无限长直导线通过电流I ,方向向上,导线旁有长度L 金属棒,绕其一端O 在平面内顺时针匀速转动,角速度为ω,O 点至导线垂直距离r 0 , 设长直导线在金属棒旋转平面内,试求:
(1金属棒转至与长直导线平行、且O 端向下时棒内感应电动势大小和方向;
(2金属棒转至与长直导线垂直、且O 端靠近导线时棒内的感应电动势的大小和方向。
解:(d B dl
ευ=×⋅ρρρ0
(L L B dl lBdl ευω=×⋅=∫∫ρρρ220011222I B L L r µωωπ==⋅方向:O M
3.无限长直导线通过电流I ,方向向上,导线旁有长度L 金属棒,绕其一端O 在平面内顺时针匀速转动,角速度为ω,O 点至导线垂直距离r 0 , 设长直导线在金属棒旋转平面内,试求:(1金属棒转至与长直导线平行、且O 端向下时,棒内感应电动势大小和方向;
(2金属棒转至与长直导线垂直、且O 端靠近导线时,棒内的感应电动势的大小和方向。
(L L B dl Bdl ευυ=×⋅=∫∫ρρρ0002L I rdr r r µωπ=+∫0002(L
I r dr r r µωπ=⋅⋅+∫0000[ln ]2I r L L r r µωπ+=−方向:O N
4. 如图,真空中长直导线通有电流I=I=I(t I(t I(t
,有一带滑动边矩形导线框与长直导线平行共面,二者相距a ,线框滑动边与长直导线垂直,长度为b ,并且以匀速ν滑动,若忽略线框中自感电动势,开始时滑动边与对边重合。
求:(1任意时刻矩形线框内的动生电动势;(2任意时刻矩形线框内的感应电动势。
解:tdx x I S d B b a a m υπµφ∫∫+=⋅=20ρρa
b a I t +=ln
20πυµa
b
a I Bdx
b a a
+−=−=∫+ln 20πυµυε动
(ln 20I t dt
dI
a b a dt d m ++−=−=πυµφε
2. 一长直导线中通有电流I , 在其旁有一半径为R 半金属圆环ab ,二者共面,且直径ab 与直电流垂直,环心与直电流相距L ,当半圆环以速度v 平行直导线运动时,试求 (1
(1半圆环两端电势差U a -U b ; (2那端电势高?
解: a 端高。
=+直弧
εε
∫
+−=−=R
L R
L Bvdx
直弧εεR
L R L Iv −+=ln 20πµε弧。