第二章一元线性回归分析
- 格式:ppt
- 大小:2.28 MB
- 文档页数:51
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的大体思想与大体方式。
第一,本章从整体回归模型与整体回归函数、样本回归模型与样本回归函数这两组概念开始,成立了回归分析的大体思想。
整体回归函数是对整体变量间关系的定量表述,由整体回归模型在假设干大体假设下取得,但它只是成立在理论之上,在现实中只能先从整体中抽取一个样本,取得样本回归函数,并用它对整体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,要紧涉及到一般最小二乘法(OLS)的学习与把握。
同时,也介绍了极大似然估量法(ML)和矩估量法(MM)。
本章的另一个重点是对样本回归函数可否代表整体回归函数进行统计推断,即进行所谓的统计查验。
统计查验包括两个方面,一是先查验样本回归函数与样本点的“拟合优度”,第二是查验样本回归函数与整体回归函数的“接近”程度。
后者又包括两个层次:第一,查验说明变量对被说明变量是不是存在着显著的线性阻碍关系,通过变量的t查验完成;第二,查验回归函数与整体回归函数的“接近”程度,通过参数估量值的“区间查验”完成。
本章还有三方面的内容不容轻忽。
其一,假设干大体假设。
样本回归函数参数的估量和对参数估量量的统计性质的分析和所进行的统计推断都是成立在这些大体假设之上的。
其二,参数估量量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性组成了对样本估量量好坏的最要紧的衡量准那么。
Goss-markov定理说明OLS估量量是最正确线性无偏估量量。
其三,运用样本回归函数进行预测,包括被说明变量条件均值与个值的预测,和预测置信区间的计算及其转变特点。
二、典型例题分析例一、令kids表示一名妇女生育小孩的数量,educ表示该妇女同意过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包括什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭露教育对生育率在其他条件不变下的阻碍吗?请说明。
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
第二章一元线性回归模型一、知识点列表二、关键词1、回归分析基本概念关键词:回归分析在计量经济学中,回归分析方法是研究某一变量关于另一(些)变量间数量依赖关系的一种方法,即通过后者观测值或预设值来估计或预测前者的(总体)均值。
回归的主要作用是用来描述自变量与因变量之间的数量关系,还能够基于自变量的取值变化对因变量的取值变化进行预测,也能够用来揭示自变量与因变量之间的因果关系关键词:解释变量、被解释变量影响被解释变量的因素或因子记为解释变量,结果变量被称为被解释变量。
2、回归模型的设定关键词:随机误差项(随机干扰项)不包含在模型中的解释变量和其他一些随机因素对被解释变量的总影响称为随机误差项。
产生随机误差项的原因主要有:(1)变量选择上的误差;(2)模型设定上的误差;(3)样本数据误差;(4)其他原因造成的误差。
关键词:残差项(residual )通过样本数据对回归模型中参数估计后,得到样本回归模型。
通过样本回归模型计算得到的样本估计值与样本实际值之差,称为残差项。
也可以认为残差项是随机误差项的估计值。
3、一元线性回归模型中对随机干扰项的假设 关键词:线性回归模型经典假设线性回归模型经典假设有5个,分别为:(1)回归模型的正确设立;(2)解释变量是确定性变量,并能够从样本中重复抽样取得;(3)解释变量的抽取随着样本容量的无限增加,其样本方差趋于非零有限常数;(4)给定被解释变量,随机误差项具有零均值,同方差和无序列相关性。
(5)随机误差项服从零均值、同方差的正态分布。
前四个假设也称为高斯马尔科夫假设。
4、最小二乘估计量的统计性质关键词:普通最小二乘法(Ordinary Least Squares ,OLS )普通最小二乘法是通过构造合适的样本回归函数,从而使得样本回归线上的点与真实的样本观测值点的“总体误差”最小,即:被解释变量的估计值与实际观测值之差的平方和最小。
ββ==---∑∑∑nn n222i i 01ii=111ˆˆmin =min ()=min ()i i i i u y y y x关键词:无偏性由于未知参数的估计量是一个随机变量,对于不同的样本有不同的估计量。
第二章一元线性回归模型计量经济学在对经济现象建立经济计量模型时,大量地运用了回归分析这一统计技术,本章和下一章将通过一元线性回归模型、多元线性回归模型来介绍回归分析的基本思想。
第一节回归分析的几个基本问题回归分析是经济计量学的主要工具,下面我们将要讨论这一工具的性质。
一、回归分析的性质(一)回归释义回归一词最先由F •加尔顿(Francis Galt on )提出。
加尔顿发现,虽然有一个趋势,父母高,儿女也高:父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归” 到全体人口的平均身高。
或者说,尽管父母双亲都异常高或异常矮,而儿女的身高则有走向人口总体平均身高的趋势(普遍回归规律)。
加尔顿的这一结论被他的朋友K •皮尔逊(Karl pearson)证实。
皮尔逊收集了一些家庭出身1000多名成员的身高记录,发现对于一个父亲高的群体,儿辈的平均身高低于他们父辈的身高,而对于一个父亲矮的群体,儿辈的平均身高则高于其父辈的身高。
这样就把高的和矮的儿辈一同“回归”到所有男子的平均身高,用加尔顿的话说,这是“回归到中等” 。
回归分析是用来研究一个变量(被解释变量Explained variable或因变量Dependent variable 与另一个或多个变量(解释变量Explanatory variable或自变量Independent variable之间的关系。
其用意在于通过后者(在重复抽样中)的已知或设定值去估计或预测前者的(总体)均值。
下面通过几个简单的例子,介绍一下回归的基本概念。
例子1.加尔顿的普遍回归规律。
加尔顿的兴趣在于发现为什么人口的身高分布有一种稳定性,我们关心的是,在给定父辈身高的条件下找出儿辈平均身高的变化。
也就是一旦知道了父辈的身高,怎样预测儿辈的平均身高。
为了弄清楚这一点,用图 1.1 表示如下图 1.1 对应于给定父亲身高的儿子身高的假想分布图 1.1 展示了对应于设定的父亲身高, 儿子在一个假想人口总体中的身高分布, 我们不难发现,对应于任一给定的父亲身高, 相对应都有着儿子身高的一个分布范围,同时随着父亲身高的增加,儿子的平均身高也增加,为了清楚起见,在1.1散点图中勾画了一条通过这些散点的直线,以表明儿子的平均身高是怎样随着父亲的身高增加而增加的。