第一章发动机热力循环与性能指标2
- 格式:ppt
- 大小:1.14 MB
- 文档页数:24
第一章发动机的性能三、名词解释1. 平均有效压力:单位气缸工作容积所做的循环有效功称为平均有效压力。
2. 升功率:在标定工况下,每升发动机工作容积发出的有效功率称为升功率。
3. 活塞平均运动速度:发动机在标定转速下工作时,活塞往复运动速度的平均值称为活塞平均运动速度。
4. 机械效率:指示功减去机械损失功后,转为有效输出功的百分比称为机械效率。
5. 有效燃油消耗率:发动机每发出h kW ⋅1的有效功所消耗的燃油量。
6. 燃烧效率:燃料化学能通过燃烧转为热能的百分比称为燃烧效率。
7. 平均指示压力:单位气缸工作容积所做的循环指示功称为平均指示压力。
8.工质定压比热容:单位质量工质在定压过程中温度升高1℃所需的热量称为工质的定压比热容。
四、简答9.简述工质改变对发动机实际循环的影响。
答案要点:1)工质比热容变化的影响:比热容Cp 、Cv 加大,k 值减小,也就是相同加热量下,温升值会相对降低,使得热效率也相对下降。
2)高温热分解:这一效应使燃烧放热的总时间拉长,实质上是降低了循环的等容度而使热效率ηt 有所下降。
3)工质分子变化系数的影响:一般情况下μ>1时,分子数增多,输出功率和热效率会上升,反之μ<l 时,会下降。
4)可燃混合气过量空气系数的影响:当过量空气系数φa <1时,部分燃料没有足够空气,或排出缸外,或生成CO ,都会使ηt 下降。
而φa >1时,ηt 值将随φa 上升而有增大。
10. S/D (行程/缸径)这一参数对内燃机的转速、结构、气缸散热量以及与整车配套的主要影响有哪些? 答案要点:活塞平均运动速度30sn m =ν若S /D 小于1,称为短行程发动机,旋转半径减小,曲柄连杆机构的旋转运动质量的惯性力减小;在保证活塞平均运动速度m ν不变的情况下,发动机转速n 增加,有利于与汽车底盘传动系统的匹配,发动机高度较小,有利于在汽车发动机仓的布置;S /D 值较小,相对散热面积较大,散热损失增加,燃烧室扁平,不利于合理组织燃烧等。
第一章发动机的性能指标与循环分析§1.1 工质对活塞所作之功及示功图四.工质对活塞作功1.正功,负功在发动机工作循环的每一个冲程中,由于活塞总在运动,活塞顶面缸内工质和活塞背面缸外介质都要对活塞作功。
工质压力与活塞运动方向相同时,作正功,反之作负功。
2.冲程功,循环功每一冲程所作之功叫冲程功;每一循环所作之功叫循环功,图1各冲程压力形成的封闭曲线所包围的环积分面积表示。
五.四冲程发动机的示功图1.自然吸气四冲程发动机的示功图1)活塞背面压力p0在四个冲程中对活塞作功为零,因而循环功可由单缸内工质对活塞作功来计算;2)循环动力过程功:压缩与燃烧膨胀冲程所作之正功称为循环动力过程功,即:W1+W3进、排气冲程泵气功:进、排气过程中,工质对活塞所作之功,是排气负功与进气正功之和,即:W2+W3循环过程净功(指示功):Wi=(W1+W3)-(W2+W3)= W1-W22.增压四冲程发动机示功图由于增压时缸内平均进气压力大于大气压力p0,一般也大于缸内平均排气压力,所以示功图上的泵气功为正功,净指示功为W i=W1+W2六.泵气过程功1.实际泵气功:W2面积2.理论泵气功:(p b-p k)V s,自然吸气机型为零。
3.泵气损失功:自然吸气机型为W2。
§1.2 动力、经济性能指标一. 两类指标 1) 指示性能指标以工质对活塞作功为计算基准的指标称为指示性能指标,简称指示指标。
直接反映工作循环进行的好坏。
包括指示功、平均指示压力、指示热效率和指示燃油消耗率。
2) 有效性能指标以曲轴输出功为计算基准的指标称为有效性能指标,简称有效指标。
用于评定发动机实际工作能力的优劣。
二. 指示性能指标1. 循环指示功与平均指示压力1) 循环指示功:在气缸内完成一个工作循环工质对活塞所作的有用功。
用W i 表示。
W i=W 1+W 2(增压)Wi =(W1+W 3)-(W 2+W 3) = W 1-W 2 (自然吸气)2) 平均指示压力:单位气缸工作容积所作的循环指示功。
第一章发动机的性能一.主要内容1.理论循环的定义,理论循环的评定参数。
2.发动机实际循环的定义。
3.示功图的概念。
4.指示指标与有效指标。
5.机械效率的定义,机械损失的测定,影响发动机机械损失的因素。
6.热平衡的基本概念。
二.重点1.对发动机理论循环与实际循环的分析2.发动机的指示指标与有效指标3.发动机的机械损失组成、影响因素三.难点1.理论循环的比较2.循环热效率及其影响因素3.有效指标的分析与提高发动机动力性和经济性的4.汽车发动机机械效率的测定方法5.热平衡(实际循环热平衡、发动机热平衡)1.理论循环的定义,理论循环的评定参数。
答:理论循环定义:发动机的理论循环是将非常复杂的实际工作过程加以抽象简化,忽略一些因素,所得出的简化循环。
理论循环评定参数:循环热效率ηt:指热力循环所获得的理论功W t与为获得理论功所加入的总的热量Q1之比,即ηt=W t/Q1=1-Q2/Q1循环热效率是用来评价动力机械设备在能量转换过程中所遵循的理论循环的经济性。
循环平均压力P t:指单位气缸工作容积所做的循环功,即P t=W t/V s=ηt·Q1/ V s循环平均压力是用来评价循环的做功能力。
1.发动机实际循环的定义。
答:发动机实际循环的定义:发动机的实际循环是由进气行程、压缩行程、做功行程以及排气行程4个行程5个过程组成的工作循环。
发动机的热平衡:是指发动机实际工作过程中所加入气缸内的燃料完成燃烧时所能放出的热量的具体分配情况。
发动机理论循环的定义发动机的机械损失组成、影响因素————刘忠俊答:发动机的机械损失组成包括:①发动机内部相对运动件的摩擦损失;②驱动附件的损失;③换气过程中的泵气损失。
影响因素:⑴气缸内最高燃烧压力(凡是导致最高燃烧压力上升的因素都将加大摩擦损失,导致机械损失加大);⑵转速——转速N上升,机械损失功率增加,机械效率下降;⑶负荷——随负荷减少,机械效率ηm下降,直到空转时,有效功率Pe=0;⑷润滑条件和冷却水温度;⑸发动机技术状况。
第一章内燃机的循环及性能评价指标1内燃机是在气缸内将燃料的化学能通过燃烧转为热能,再通过曲柄连杆机构将热能转化为机械的动力装置.根据完成一次能量转换所需的行程数不同,内燃机分四冲程机和二冲程机2内燃机对外输出功需要的环节:第一环节:混合气的形成并导入气缸的过程.第二环节:燃烧放热过程.第三环节:能过量的传递过程。
3三种理论循环:等容丶等压丶混合加热循环,①当加热量和压缩比相同时放热Qp>Qm>Q v ②.加热量和最高压力一定时,Qv>Qm>Qp③最高压力和最高温度一定时Qv=Qm=Qp4四冲程内燃机的实际循环热效率取决于混合气形成方式和燃烧放热规律,以及压缩比的最佳匹配.汽油机是均匀混合气以火焰传播形式迅速燃烧,柴油机根据混合气的形成特点家燃烧分预混合燃烧和扩散燃烧5论循环的评价:常用循环热效率(是指热力循环所获得的理论功与为获得该理论功所加入的总热量之比)评价动力机械设备在能量转换过程中所遵循理论循环的经济性,用循环平均压力(是指单位气缸工作容积所做的循环功)评价循环的做工能力. 6四冲程内燃机的实际循环:由进气行程(过程)丶压缩行程(过程)丶做功行程(燃烧过程和膨胀过程)以及排气过程(过程)4个行程5个过程组成。
评价指标:内燃机性能评价指标有两大类,即以活塞做功为基础评价气缸内热功转换的完善程度的指示指标;和以曲轴飞轮端对外输出的有效功为基础,从实用角度评价对外做功的有效指标。
实际循环做功能力的评价指标主要有平均指示压力(定义为单位气缸工作容积所做的指示功)和指示功率(指发动机单位时间所做的指示功)。
实际循环的经济指标有指示热效率和指示燃油消耗率。
7内燃机有效性能指标:①动力性指标a有效功率(克服运动件的摩擦损失功率以及驱动冷却风扇丶机油泵等附件所消耗的功率损失后,经曲轴对外输出的有用功。
称指示功率在传递过程中所有内部消耗功率的总和为机械损失功率)b平均有效压力(单位气缸工作容积输出的有效功)②经济性指标a有效热效率(实际循环对外输出的有效功与未获得此有效功率所消耗的热量之比)③排放指标8机械损失:内燃机的机械损失①摩擦损失62%-75%②驱动附件的损失10%-20%③泵气损失9机械损失的测定a倒拖法b示功图法c灭缸法10 排气提前角如何影响发动机性能?①如果加大排气提前角,排气初期缸内压力和温度更高,超临界排气声速更高。
航空发动机的热力学性能分析航空发动机是飞行器的核心部件,它以高效地将燃料能转化为推力能力。
热力学性能的分析对于发动机的设计、优化和改进至关重要。
本文将从理论和实际应用的角度,探讨航空发动机的热力学性能分析。
一、热力学基础在进行热力学性能分析之前,有必要了解一些热力学基础概念。
热力学是研究能量转化和能量传递规律的学科,它以热力学循环为基础,利用热力学参数来描述和分析系统的能量转移过程。
1. 热力学循环热力学循环是指在特定条件下,某种工质在一系列状态变化后,重新回到起始状态的过程。
航空发动机采用的主要热力学循环是布雷顿循环和伊丁循环。
布雷顿循环是常用的喷气发动机循环,而伊丁循环则多用于涡轮螺旋桨发动机。
2. 热力学参数热力学参数是用来描述系统热力学状态和性能的物理量。
其中,压力、温度、比容和比焓是最为常用的参数。
这些参数的变化对于发动机性能的分析和评估至关重要。
二、航空发动机的热力学分析方法为了对航空发动机的热力学性能进行分析,我们可以采用以下方法:1. 状态方程分析状态方程是研究热力学系统状态的基本方程,它们描述了系统状态变量之间的相互关系。
常用的状态方程有理想气体状态方程、范德瓦尔斯状态方程等。
通过应用这些方程,可以计算出发动机在不同工况下的压力、温度等参数。
2. 热力学循环分析热力学循环分析是研究热力学循环特性的重要方法。
可以将发动机的工作循环抽象为理想循环,并根据循环的特点和性能指标计算出发动机的热效率、功率输出等参数。
同时,还可以进行循环改进和优化,以提高发动机的性能。
3. 燃烧分析航空发动机中的燃烧过程对于性能分析具有重要意义。
通过燃烧分析可以研究燃烧效率、燃烧室温度分布等参数对发动机性能的影响,并通过修改燃烧参数来改进发动机的燃烧效果。
4. 推力计算航空发动机的推力是衡量其性能的重要指标之一。
推力的大小与发动机的喷气速度、流量等因素有关。
通过计算发动机的喷气速度和流量,可以得到推力的大小,并进一步分析和优化发动机的推力性能。
第一章发动机的性能1.简述发动机的实际工作循环过程。
1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。
此时进气门开启,排气门关闭,活塞由上止点向下止点移动。
2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。
压力不断上升,工质受压缩的程度用压缩比表示。
3)燃烧过程:期间进排气门关闭,活塞在上止点前后。
作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。
4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。
(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。
3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施?提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。
提高工质的绝热指数κ可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。
⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。
⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。
⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。
⑸优化燃烧室结构减少缸内流动损失。
⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。
4.什么是发动机的指示指标?主要有哪些?答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。
它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。
5.什么是发动机的有效指标?主要有哪些?答:以曲轴输出功为计算基准的指标称为有效性能指标。
主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。
第一章发动机的性能动力性能指标:功率、转矩、转速。
经济性能指标:燃料与润滑油消耗率。
发动机的性能指标主要有运转性能指标:冷起动性能。
噪声和排气品质。
耐久可靠性指标:大修或更换零件之间的最长运行时间与故障长期工作能力。
第一节发动机理论循环一、三种基本循环1.进行理论循环分析的目的发动机的理论循环是将实际循环进行若干简化,忽略一些次要的影响因素,并对其中变化复杂、难于进行细致分析的物理、化学过程(如可燃混合气的准备与燃烧过程等)进行简化处理,从而得到便于进行定量分析的假想循环或简化循环。
(1)用简单的公式来阐明发动机工作过程各基本热力参数间的关系,以明确提过以理论循环热效率为代表的经济和以循环平均压力为代表的动力性的基本途径。
(2)确定循环热效率的理论极限,以判断实际发动机工作过程的经济性和循环进行的完善程度以及改进潜力。
(3)有利于分析比较发动机各种热力循环方式的经济性和动力性。
2.建立理论循环的简化假设最简单的理论循环是空气标准循环。
(1)假设工质(工质是热机中热能转变的一种媒介物质(如燃气、蒸汽等)依靠它在热机中的状态变化(如膨胀)才能获得功)是理想气体,其物理常数与标准状态下的空气物理常数相同。
(2)假设工质是闭口系统中作闭循环。
(3)假设工质的压缩及膨胀是绝热熵等过程。
(4)假设燃烧是外界无数个高温热源定容或定压向工质加热。
工质放热为定容放热。
3.三种基本循环发动机有三种基本空气标准循环,即定容加热循环、定压加热循环和混合加热循环。
汽油机混合气燃烧迅速,近似为定容加热循环;高增压和低速大型柴油机,由于受热燃烧最高压力的限制,大部分燃料在上止点以后燃烧,燃烧时汽缸压力变化不显著,所以近似为定压加热循环;高速柴油机介于两者之间,其燃烧过程视为定容、定压加热循环的组合,近似为混合加热循环。
混合加热循环定容加热循环定压加热循环图中,a—c为绝热压缩,a—z为等容或等压加热,z—b为绝热膨胀,b—a为等容加热。