世界各国高速动车组技术的发展现状
- 格式:doc
- 大小:8.26 MB
- 文档页数:9
2021年2月第49卷第4期机床与液压MACHINETOOL&HYDRAULICSFeb 2021Vol 49No 4DOI:10.3969/j issn 1001-3881 2021 04 035本文引用格式:杨树峰,王晓鹏,陈超,等.高速动车组齿轮箱设计研究现状及趋势[J].机床与液压,2021,49(4):173-179.YANGShufeng,WANGXiaopeng,CHENChao,etal.Researchstatusandtrendofgearboxdesignforhigh⁃speedEMU[J].MachineTool&Hydraulics,2021,49(4):173-179.收稿日期:2019-10-10基金项目:国家重点研发计划(2018YFB2001700)作者简介:杨树峰(1986 ),男,博士研究生,研究方向为齿轮传动技术㊂E-mail:yangshufeng8610@163 com㊂通信作者:刘世军(1962 ),男,硕士,研究员,博士生导师,主要研究方向为齿轮传动㊂E-mail:Lsj769@163 com㊂高速动车组齿轮箱设计研究现状及趋势杨树峰1,2,王晓鹏1,陈超1,刘世军1(1 郑州机械研究所有限公司,河南郑州450052,2 中原工学院机电学院,河南郑州450007)摘要:齿轮箱是高速动车组动力转向架的核心部件,其性能直接影响运行的安全可靠性㊂介绍了目前国内高速动车组齿轮箱结构及安装方式㊂根据齿轮箱的结构,分别从齿轮㊁支架㊁箱体㊁润滑密封等方面描述了国内外高速动车组齿轮箱设计方法的研究现状及存在的问题㊂提出了后期应重点针对齿轮箱的造型设计㊁故障诊断与健康管理和极端环境下的产品性能等方面开展相关研究,为深入研究高速动车组齿轮箱提供了参考㊂关键词:高速动车组;齿轮箱;设计方法;研究现状中图分类号:U260 332ResearchStatusandTrendofGearboxDesignforHigh-speedEMUYANGShufeng1,2,WANGXiaopeng1,CHENChao1,LIUShijun1(1 ZhengzhouResearchInstituteofMechanicalEngineeringCo.,Ltd.,ZhengzhouHenan450052,China;2 SchoolofMechanicalEngineering,ZhongyuanUniversityofTechnology,ZhengzhouHenan450007,China)Abstract:Gearboxisthecorecomponentofhigh-speedEMUpowerbogie,itsperformancedirectlyaffectsthesafetyandrelia⁃bilityofoperation.Thestructureandinstallationofthegearboxofhigh-speedEMUindomesticwasintroduced.Accordingtothestructureofthegearbox,theresearchstatusandexistingproblemsofthegearboxdesignmethodofthehigh-speedEMUathomeandabroadweredescribedfromtheaspectsofgear,bracket,box,lubricationandsealing.Itwasproposedthattheresearchshouldfocusontheshapedesign,faultdiagnosisandhealthmanagementofthegearboxandtheproductperformanceinextremeenvironment.Itprovidesreferenceforthein⁃depthstudyofhigh⁃speedEMUgearbox.Keywords:High⁃speedEMU;Gearbox;Designmethod;Researchstatus0㊀前言1964年,世界上首条高速铁路 东海道新干线投入运营,列车运行时速高达210km,产生巨大的轰动效应㊂近半个多世纪,世界各国都在努力进行铁路技术装备和现代化管理的研究,高速铁路技术取得突破性进展㊂我国于2004年开始从川崎重工㊁庞巴迪等公司引进并合作生产高速动车组,研究出适合我国的CRH1㊁CRH2㊁CRH3和CRH5型系列动车组㊂2008年,我国第一条高速铁路 京津城际铁路开始运营,2010年拥有完全自主知识产权的CRH380A㊁CRH380B型动车开始运行,实现了由仿制向创造㊁从摸索到突破的复兴之路,使我国成为了高铁里程数最长的国家㊂高铁的舒适㊁便捷㊁高效㊁准时等优势已经深入民心,但是,我国对高速重载牵引齿轮箱的研究起步较晚,整体水平与发达国家相比还有较大差距,因此,在动车组齿轮传动技术等方面还需参照国外的相关标准进行设计㊂高速动车组齿轮箱是动车组列车的动力驱动核心部件,也是保证列车正常运行的关键零部件㊂由于列车运行速度快,需面对高温高寒㊁潮湿㊁沙尘多等极端恶劣的运行环境,对齿轮箱的设计提出了更高的要求,特别是在齿轮抗载荷㊁齿间啮合㊁润滑㊁箱体强度㊁密封等方面㊂目前,小空间㊁轻量化㊁高功率密度[1]已经成为齿轮箱的设计趋势㊂1㊀高速动车组齿轮箱结构根据车型的不同,齿轮箱安装方式及传动方式也不相同,具体统计见表1㊂齿轮箱将牵引电机的转矩传递给轮轴,齿轮箱内包括小齿轮轴,它与一个直接安装在车轴上的齿轮箱相啮合,其传动方式分为斜齿轮传动和锥齿轮转动2种㊂齿轮箱的箱体由直接安装在轮轴上的圆锥滚柱轴承支承㊂平衡杆安装在转向架和齿轮箱之间,用于承受作用在齿轮箱上的各种扭矩载荷,包括由牵引和制动引起的负荷㊁转矩振动和牵引电机短路引起的转矩振动[2]㊂表1㊀高速动车组齿轮箱汇总序号实用车型传动方式安装方式模型1CRH1CRH2CRH380A斜齿轮传动平衡杆吊装2CRH5锥齿轮传动平衡杆横装3CRH3CRH380B斜齿轮传动C形托架2 高速动车组齿轮箱设计研究现状2 1㊀齿轮设计高速重载齿轮传动在高速轧机㊁高速列车及航空发动机等中得到广泛应用,运行中需承受较高的载荷,运行速度高,工况相对复杂㊂因此,对高速重载齿轮传动进行非线性动力学㊁计算机辅助工程㊁制造系统工程等基础理论研究尤为迫切㊂高铁齿轮箱采用一级渐开线齿轮传动方式,在设计齿轮的过程中充分考虑因轮齿时变啮合刚度㊁齿侧间隙和传递误差等非线性因素引起的传动不稳定现象,对高速重载齿轮传动的稳定性展开研究㊂大连理工大学的学者根据齿轮传动中出现的非线性动力学现象,如混沌和分岔现象[3],结合高速动车牵引齿轮箱的特点,建立斜齿轮-扭-轴非线性动力学模型,采用定性和定量的方法,研究了激励频率㊁啮合阻尼和齿侧间隙对系统产生混沌和分岔的规律和机制㊂西南交通大学的学者采用集中参数法建立基于多种非线性因素的齿轮系统动力学模型[4],研究了齿轮传动系统在内㊁外部激励作用下的轮齿间啮合力传递及变化规律㊂以上对动力学模型的分析是基于理论研究的,缺乏实验性的验证㊂传动模型的精确建模是进行齿轮啮合研究的基础,通过对齿轮各曲线方程的推导,根据齿轮空间啮合原理,完成动车组齿轮箱斜齿轮对模型的精确装配[5]㊂有学者基于VisualC++和SolidWorks,利用MFC类型库对列车牵引齿轮进行参数化设计,实现了模型的设计㊁建模㊁装配一体化设计[6]㊂由于高速列车传动齿轮的制造和装配误差的影响,以及齿轮基节误差的作用,导致齿面载荷突变㊁啮入和啮出位置载荷集中等现象,需进行齿面修形研究㊂在齿廓修形研究中,主要针对主动轮齿顶㊁齿根的变形量和长度等参数展开研究[7-8],可结合啮合理论和实际工况对齿轮修形量进行计算㊂有学者根据齿轮在啮合过程中齿轮副的热弹变形[9-10],对斜齿轮采用直修形的方式,研究齿轮修形曲线,并运用VB及ANSYS/APDL语言编制了一套基于热弹变形的齿轮修形软件,实现齿轮修形的可视化操作[11]㊂在齿向修形研究中,郑州机械研究所团队针对动车组传动齿轮副触底误差及齿面载荷分布不均的问题,通过将小齿轮直线修形㊁鼓形修形和大齿轮的螺旋角修形相结合的方式[12],使传递误差减少26 42%,线载荷减小43 64%,使齿面接触区域分布更加合理;LIU和PARKER[13]考虑齿轮动载荷分布㊁时变啮合刚度和齿廓修形等因素的影响,建立了齿轮非线性分析模型,研究了齿廓修形对多啮合齿轮系统振动响应的影响规律㊂陈思雨等[14]利用准静态接触下的有限元计算方法得到不同修形量的啮合刚度和静态传递误差,研究不同齿廓修形量和修形长度对齿轮动态行为的影响,并提出根据W齿轮副的振动幅值及动态因子来确定最佳的修形参数,使齿轮副啮合的接触斑点㊁齿面线载荷分布以及传递误差明显降低,㊃471㊃机床与液压第49卷传动更加平稳㊂2 2㊀轴承选型齿轮箱轴承为高速轨道列车运行的支撑部件,运行中承受极大的轴向载荷及径向载荷,其性能的稳定性及寿命直接影响动车组运行安全㊂目前,高速轨道列车所需的电机轴承㊁齿轮箱轴承㊁轮轴轴承全部被瑞典SKF㊁德国FAG㊁日本NTN等国外知名厂商垄断[15]㊂由表1可知,CRH1和CRH3系列均采用一级斜齿轮传动,如图1所示,输入轴上装有1个四点接触球轴承和2个圆柱滚子轴承[16]㊂四点接触球轴承承受轴向载荷,与轴承座内圈采用间隙配合;圆柱滚子轴承承受径向载荷,采用过渡配合的方式装入轴承座㊂输出轴采用圆锥滚子轴承面对面布置㊂CRH5型高速动车组采用一级锥齿轮传动方式,如图2所示,输入轴上同样安装有1个四点接触球轴承和2个圆柱滚子轴承;输出轴上安装有圆锥滚子轴承和双列圆锥滚子轴承[17]㊂圆锥滚子轴承可承受较高的轴向力,安装后可通过调整轴向游隙提高轴承的旋转精度和承载能力[18]㊂图1㊀一级斜齿轮传动图2㊀一级锥齿轮传动2 3㊀支架设计目前,高速列车采用的齿轮箱安装方式主要有齿轮箱吊杆和C形支架2种吊挂方式,其结构简图分别如图3㊁图4所示,在悬架连接处都安装有弹簧橡胶模块,该模块既可以较好地承受载荷,也可在弹簧失效时起到一定的承载作用㊂图3㊀吊杆吊装简图㊀㊀㊀图4㊀C形支架吊装简图HOLZAPFEL和BASSMANN[19]在吊杆支架的基础上研制出C形支架㊂相比于吊杆吊挂,C形支架使受力分散到2个位置,更加可靠㊂目前,以CRH2㊁CRH380A为代表的日系动车组均采用了吊杆吊挂式安装,以CRH3㊁CRH380B为代表的德系动车组则采用了C形支架安装方式,2种安装方式均属于弹性安装㊂有学者分别计算了不同齿轮箱安装方式对车辆动力学性能的影响,在低速状态下吊杆吊挂方式振动加速度更小,但在350km/h以上时,C形支架表现更佳[20-23]㊂2 4㊀箱体研究随着高速动车组向高可靠㊁高速㊁舒适等趋势发展,对齿轮箱提出了更高的要求㊂箱体作为齿轮箱的支撑件,其稳定性㊁安全性直接影响动车行业的发展㊂目前,箱体均采用铝合金铸造成型,箱体结构的高强度㊁轻质化一直是箱体的发展方向㊂(1)箱体CAE分析学者们分别从模态分析㊁静力学分析㊁谐响应分析等方面对箱体强度进行研究[24],根据箱体存在的应力集中现象,提出箱体改进方案[20],采用等损伤准则[25]㊁Steinberg积累损伤三区间法[26]等方法对箱体进行疲劳寿命的评估㊂针对出现故障裂纹的箱体,采用金相检测和实际测试的实验方法进行研究[27-28],指出箱体固有频率与轨道激励在低频存在共振现象,为箱体的改进指明方向㊂(2)箱体优化设计在箱体轻量化方面,学者们以体积最小为目标函数[29],采用灵敏度分析法和物理规划法,对箱体进行稳健优化分析;利用HyperMesh软件中的拓扑和形状优化功能对箱体进行优化设计[30],降低最大变形量和等效应力;以容差和优质率为目标函数[31],采用模糊理论与容差多面体法对箱体装配尺寸链进行优化㊂2 5㊀密封及润滑的研究高速动车组驱动齿轮箱的密封设计技术至关重要,密封性能的优劣直接影响到齿轮箱零部件的使用寿命以及高速动车组运行的安全性和可靠性㊂为了保证齿轮箱的高效工作,其传动轴的轴端通常采用非接触式迷宫密封㊂2 5 1㊀密封性能研究(1)迷宫密封结构㊂为了增强迷宫密封的性能,学者们提出了不同的方案:①分别设置阶梯密封外环和内环[32];②在轴两侧的油路设置2-3道内装有带切口的涨圈的环形槽[33];③将内挡油环的外环面处理成超疏油膜层,将外挡油环的外环面处理成超疏水膜层[34];④增加径向密封以及轴向密封的长度间隙比[35];⑤将密封齿齿形锐化(减小夹角和齿顶长㊃571㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀度)[36];⑥将迷宫密封更改为阶梯式迷宫密封,减小密封间隙,增加密封空腔[37]㊂通过采用不同的结构方案,阻止箱体内润滑油泄漏以及外界水分㊁杂质进入箱体㊂(2)密封数值模拟㊂学者们主要采用了数值模拟和实验研究相结合的方式进行密封数值模拟,裘雪玲[38]从不同压比㊁密封齿顶间隙㊁进气预旋等方面对泄漏量进行研究;田华军等[39]从密封齿的节流间隙尺寸㊁齿间回油效果㊁齿尖厚度等方面展开研究;还有学者研究空腔数量和深度[40-41]㊁进出口压差㊁转速[42]对泄漏系数的影响㊂2 5 2㊀润滑性能研究国内高速动车齿轮箱齿轮油一般是选用设备说明书上推荐的品牌及型号,但是由于受到运行环境及复杂工况的影响,有时需要根据齿轮载荷㊁摩擦副相对速度㊁工作温度等参数选取[43]㊂有学者通过在齿轮油中添加TiO2[44]或者钼元素[45]来提高齿轮油的抗载和耐磨性能㊂齿轮油在不同转速和载荷下表现出的摩擦特性也不同[46],刘杰等人[47]提出了有效润滑油量的概念,并探讨与浸油深度㊁大齿轮转速的关系,当齿轮啮合线速度为35m/s时,搅油损失急剧增大[48],中车的高军团队通过实验方法对齿轮油中的硫添加剂[49]和换油周期[50]进行了研究㊂2 6㊀齿轮箱性能研究动车组齿轮箱传动系统性能一直是研究重点,目前主要采用仿真实验和在线监测的方式来评估齿轮箱性能㊂(1)在仿真实验方面,研究人员将齿轮箱温度㊁振动[51]㊁噪声[52]㊁传动效率㊁可靠性为评价指标,采用定性㊁定量的筛选方法,开发了动车组齿轮传动性能综合评价软件[53]㊂有学者针对运行中存在的负压现象,研制了相关实验设备[54],以验证箱体性能㊂(2)在在线监测方面,有学者通过研究齿轮油中铁元素性能的退化数据[55],建立了齿轮箱的性能评价方法;学者还研制了基于涡流技术的非接触探伤仪[56];张伟伟[57]设计了基于光纤布拉格(Bragg)光栅传感器的动车组齿轮箱的实时振动监测系统;邓晓宇[58]根据检测数据和非参数的核密度估计方法,建立 齿轮箱振动阈值数据库 与 齿轮系统故障特征频率库 ,确保齿轮箱的安全运行㊂3㊀高速动车组齿轮箱的展望随着我国铁路行业的不断发展,高速动车组运行将呈现 高速㊁重载㊁全天候 的特点[59],而机车驱动系统为适应这些特点,向高速㊁大功率方向发展成为必然趋势,所以必然对齿轮箱的结构㊁承载能力㊁润滑系统及抗胶合㊁振动能力提出更高的要求㊂因此,结合我国高速动车组齿轮箱传动系统的发展现状[60],应从以下几方面加大研究力度:(1)应对高速动车组齿轮箱齿轮从结构设计㊁参数优化㊁动力学性能分析等方面进行创新性研究,开发出适合我国现状的传动齿轮㊂同时,在日常的维修㊁故障解决中及时总结经验,在设计中加以改进,防患于未然㊂(2)目前国内减速机箱体依旧沿用国外的结构,缺乏工业设计㊁艺术设计角度的创新,应该用人机交互等新的设计方法对箱体外观进行研究㊂(3)关于高速动车组列车齿轮箱在线监测㊁故障诊断技术方面的研究还不够深入,难以建立产品的故障诊断与健康管理系统,核心的振动机制研究和故障特征的提取及其对应的信号分析方法都有待深入研究㊂(4)针对高速动车组齿轮箱在极端㊁恶劣环境中运行的研究不够深入,运行中齿轮箱外围气压为瞬态㊁交替变化,导致齿轮箱内气液流场比较复杂㊂用于齿轮箱运行过程相关仿真及实验的设备比较缺失㊂在齿轮箱轻量化设计制造㊁润滑密封㊁高可靠性等方面应重点攻关㊂4㊀结束语高速动车组齿轮箱的设计是一项系统工程,我国对高速重载牵引齿轮箱的研究起步较晚,整体水平与发达国家相比还有较大差距㊂本文作者从高速动车组齿轮箱的结构出发,在齿轮㊁轴承㊁支架㊁箱体㊁密封润滑等方面综述了国内外的研究现状,最后从齿轮设计制造㊁箱体外观设计㊁在线检测㊁极端场合等方面展望了齿轮箱未来的研究方向㊂参考文献:[1]高小平.高速动车齿轮箱产品开发中的计算仿真应用[J].轨道交通装备与技术,2015(5):1-4.GAOXP.ApplicationofcomputationalsimulationinthedevelopmentofgearboxesforhighspeedEMUs[J].RailTransportationEquipmentandTechnology,2015(5):1-4.[2]王伯铭.高速动车组总体及转向架[M].2版.成都:西南交通大学出版社,2014:242-253.[3]褚衍顺.高速重载齿轮传动系统稳定性研究[D].大连:大连理工大学,2012.CHUYS.Studyonstabilityofhighspeed&heavyloadgeartrain[D].Dalian:DalianUniversityofTechnology,2012.[4]全克博.CRH2型动车组齿轮系统动力学特性分析[D].成都:西南交通大学,2015.QUANKB.ThedynamicsanalysisofCRH2multipleunitsgearsystem[D].Chengdu:SouthwestJiaotongUniversity,2015.[5]杨萌.高速列车传动系统齿轮可靠性建模研究[D].北㊃671㊃机床与液压第49卷京:北京交通大学,2014.YANGM.Researchonreliabilitymodelingofthetransmis⁃siongearsinthehighspeedtrain[D].Beijing:BeijingJiao⁃tongUniversity,2014.[6]曹从庆.机车车辆齿轮参数化CAD系统研究[D].成都:西南交通大学,2012.CAOCQ.ResearchonaparameterizedCADsystemforthevehiclegear[D].Chengdu:SouthwestJiaotongUniversity,2012.[7]黄琦.高速列车传动齿轮齿廓修形及箱体优化设计[D].大连:大连理工大学,2012.HUANGQ.Researchongearprofilemodificationandtheoptimizationdesignforgearboxofhigh⁃speedtraindrivesystem[D].Dalian:DalianUniversityofTechnology,2012.[8]HUZH,TANGJY,ZHONGJ,etal.Effectsoftoothprofilemodificationondynamicresponsesofahighspeedgear⁃ro⁃tor⁃bearingsystem[J].MechanicalSystemsandSignalPro⁃cessing,2016,76/77:294-318.[9]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆:重庆大学,2004.LISB.Studyoncoupledthermo⁃elasticdeformationandnonlineardynamicemulateabouthigh⁃speed,heavy⁃loadgeartransmissionssystem[D].Chongqing:ChongqingUni⁃versity,2004.[10]姚阳迪.基于热弹变形的高速重载齿轮修形研究[D].重庆:重庆大学,2010.YAOYD.Modificationresearchofhigh⁃speedandheavy⁃loadgearbasedonthermo⁃elasticdeformation[D].Chongqing:ChongqingUniversity,2010.[11]杨玉良.斜齿轮系统热弹耦合及修形减振研究[D].大连:大连理工大学,2016.YANGYL.Researchonthermo⁃elasticcouplingandvi⁃brationdampingwithmodificationofhelicalgearsystem[D].Dalian:DalianUniversityofTechnology,2016.[12]范乃则,田华军,裴帮,等.基于KISSsoft动车组传动齿轮修形优化设计[J].机械传动,2017,41(3):83-87.FANNZ,TIANHJ,PEIB,etal.Modificationandopti⁃mizationdesignofmotortrainunittransmissiongearbasedonKISSsoft[J].JournalofMechanicalTransmission,2017,41(3):83-87.[13]LIUG,PARKERRG.Dynamicmodelingandanalysisoftoothprofilemodificationformultimeshgearvibration[J].JournalofMechanicalDesign,2008,130(12):121402.[14]陈思雨,唐进元,王志伟,等.修形对齿轮系统动力学特性的影响规律[J].机械工程学报,2014,50(13):59-65.CHENSY,TANGJY,WANGZW,etal.Effectofmodi⁃ficationondynamiccharacteristicsofgeartransmissionssystem[J].JournalofMechanicalEngineering,2014,50(13):59-65.[15]张亨飏.高速动车轴承试验台的开发与研究[D].长春:吉林大学,2017.ZHANGHY.Designandresearchonthetestrigofhigh⁃speedrailwayrollingbearings[D].Changchun:JilinUni⁃versity,2017.[16]吴成攀,阙红波,王本涛,等.典型动车组齿轮箱轴承的计算[C]//铁路车辆轮轴技术交流会论文集.大连,2016:107-112.[17]李春蕾,吴承攀,赵艳英,等.标准动车组齿轮箱轴承的选型及开发[C]//铁路车辆轮轴技术交流会论文集.大连:中国铁道学会,2016.[18]刘志恒,张红军.轴箱轴承轴向自由间隙对机车动力学影响分析[J].铁道学报,2006,28(2):48-52.LIUZH,ZHANGHJ.Influenceofaxialfreeclearancesofaxleboxbearingsonlocomotivedynamics[J].JournaloftheChinaRailwaySociety,2006,28(2):48-52.[19]HOLZAPFELM,BASSMANNT.Designinghigh⁃perform⁃ancedrivesfor350km/hhigh⁃speedtrainoperation[J].RailEngineeringInternational,2005,6(4):201-206.[20]胡伟钢,刘志明,李强,等.高速列车齿轮箱载荷识别方法研究[J].铁道学报,2020,42(12):50-57.HUWG,LIUZM,LIQ,etal.Loadidentificationmethodforhigh⁃speedtraingearbox[J].JournaloftheChinaRail⁃waySociety,2020,42(12):50-57.[21]刘杰,刘世军,郭熛,等.基于有限元的高铁齿轮箱箱体载荷计算与结构分析[J].机械传动,2016,40(2):77-81.LIUJ,LIUSJ,GUOB,etal.StructuralanalysisandloadcalculationofCRH380high⁃speedrailgearboxbasedonfiniteelement[J].JournalofMechanicalTransmission,2016,40(2):77-81.[22]YANGJW,YANGMH,LIX,etal.Strengthanalysisandexperimentofhighspeedrailwaygearboxbracket[J].TheOpenMechanicalEngineeringJournal,2015,9(1):266-270.[23]李众.高速动车组转向架齿轮箱安装方式研究[D].成都:西南交通大学,2017.LIZ.Researchoninstallationmethodofgearboxforhigh⁃speedtrains[D].Chengdu:SouthwestJiaotongUniversity,2017.[24]王富民,李捷,杨建伟,等.地铁齿轮箱箱体模态及谐响应分析[J].机械传动,2015,39(9):146-150.WANGFM,LIJ,YANGJW,etal.Modalandharmonicresponseanalysisofsubwaygearboxhousing[J].JournalofMechanicalTransmission,2015,39(9):146-150.[25]袁文东.标准动车组齿轮箱箱体强度分析与寿命预测[D].北京:北京交通大学,2016.YUANWD.Analysisonthestrengthandfatigue⁃lifepre⁃dictionofstandardhigh⁃speedEMUgearboxhousing[D].Beijing:BeijingJiaotongUniversity,2016.㊃771㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀[26]潘红明.基于三区间法的高速动车组齿轮箱体疲劳寿命研究[D].成都:西南交通大学,2016.PANHM.Studyongearboxfatiguelifeanalysisbystein⁃bergmethod[D].Chengdu:SouthwestJiaotongUniversity,2016.[27]HUWG,LIUZM,LIUDK,etal.Fatiguefailureanalysisofhighspeedtraingearboxhousings[J].EngineeringFail⁃ureAnalysis,2017,73:57-71.[28]LIGQ.Fatiguecrackmechanismstudyonhigh⁃speedEMUgearbox[J].JournalofMechanicalEngineering,2017,53(2):99-105.[29]李永华,臧庆,张军.高速动车组齿轮箱稳健优化设计[J].大连交通大学学报,2015,36(6):29-33.LIYH,ZANGQ,ZHANGJ.Robustdesignoptimizationofgearboxonhigh⁃speedEMU[J].JournalofDalianJiao⁃tongUniversity,2015,36(6):29-33.[30]魏静,李震,孙伟,等.基于SIMP及应变能理论的高速动车齿轮箱结构优化[J].机械强度,2011,33(4):558-564.WEIJ,LIZ,SUNW,etal.Shapeandtopologyoptimiza⁃tionforgearboxofhigh⁃speedtrainbasedonSIMPmodelandstrainenergytheory[J].JournalofMechanicalStrength,2011,33(4):558-564.[31]臧庆.高速动车组齿轮箱稳健优化设计研究[D].大连:大连交通大学,2015.ZANGQ.Robustoptimizationdesignofgearboxonhigh⁃speedEMU[D].Dalian:DalianJiaotongUniversity,2015.[32]重庆江增船舶重工有限公司.一种齿轮箱密封装置:CN201120525968.1[P].2012-09-05.[33]哈尔滨东安发动机(集团)有限公司.风电齿轮箱的密封结构:CN201120533043.2[P].2012-08-01.[34]郑州机械研究所.高速列车齿轮箱轴密封结构:CN2016106003981.8[P].2016-12.[35]李枫,金思勤,吴成攀.高速动车组齿轮箱迷宫密封系统设计与试验验证[J].机车车辆工艺,2013(2):1-3.LIF,JINSQ,WUCP.Designandverificationofthelab⁃yrinthsealingsystemforthegearboxofhighspeedEMU[J].Locomotive&RollingStockTechnology,2013(2):1-3.[36]张雨,张开林,姚远.高速动车组齿轮箱径向迷宫密封的数值研究[J].润滑与密封,2016,41(12):16-20.ZHANGY,ZHANGKL,YAOY.Numericalstudyofra⁃diallabyrinthsealforhigh⁃speedtrainunitgearbox[J].LubricationEngineering,2016,41(12):16-20.[37]张晶.地铁齿轮箱结构改进研究[D].上海:上海交通大学,2014.ZHANGJ.Studyonimprovementofmetrogearboxstruc⁃ture[D].Shanghai:ShanghaiJiaoTongUniversity,2014.[38]裘雪玲.迷宫密封流场与转子动力学耦合研究[D].杭州:浙江大学,2007.[39]田华军,范乃则,裴帮,等.基于Fluent的高速动车组齿轮箱迷宫密封数值模拟[J].机械传动,2017,41(4):62-66.TIANHJ,FANNZ,PEIB,etal.NumericalsimulationoflabyrinthsealofhighspeedEMUgearboxbasedonfluent[J].JournalofMechanicalTransmission,2017,41(4):62-66.[40]ZHAOW,NIELSENTK,BILLDALJT.Effectsofcavityonleakagelossinstraight⁃throughlabyrinthseals[C]//ProceedingsofEarthandEnvironmentalScience,25thIAHRSymposiumonHydraulicMachineryandSystems.Timişoara,2010.[41]吴特,米彩盈.高速齿轮箱润滑系统密封结构的数值研究[J].铁道学报,2014,36(4):26-31.WUT,MICY.Numericalanalysisonsealstructureofhigh⁃speedgearboxlubricationsystem[J].JournaloftheChinaRailwaySociety,2014,36(4):26-31.[42]王琰,王丽娜,张开林.高速齿轮箱迷宫密封流场和泄漏特性的数值研究[J].内燃机车,2012(3):6-9.WANGY,WANGLN,ZHANGKL.Numericalstudyofflowfieldandleakagecharacteristicsoflabyrinthsealforhighspeedgearbox[J].DieselLocomotives,2012(3):6-9.[43]马骁驰,张朝前,张松鹏,等.高速列车齿轮箱润滑油黏度指数的计算方法研究[J].润滑与密封,2015,40(4):26-29.MAXC,ZHANGCQ,ZHANGSP,etal.Thecalculationmethodsofhigh⁃speedtraingearboxlubricantviscosityin⁃dex[J].LubricationEngineering,2015,40(4):26-29.[44]赵巍,粟斌,周新聪,等.GL-5重负荷车辆齿轮油换油周期研究[C]//第八届全国摩擦学大会论文集.广州:中国机械工程学会,2007.[45]陈琳,李枫,水琳,等.高速列车齿轮油性能要求与验证方法初探[J].合成润滑材料,2014,41(3):9-12.CHENL,LIF,SHUIL,etal.Primarydiscussionsofper⁃formancerequirementsandverificationmethodsofgearoilsforhighspeedtrain[J].SyntheticLubricants,2014,41(3):9-12.[46]盛晨兴,曾卓,冯伟,等.高铁齿轮油摩擦学特性的试验探究[J].润滑与密封,2016,41(5):86-90.SHENGCX,ZENGZ,FENGW,etal.Experimentalex⁃ploreontribologicalpropertiesofhigh⁃speedrailgearoils[J].LubricationEngineering,2016,41(5):86-90.[47]刘杰,刘世军,徐文博,等.高速列车齿轮箱润滑性能优化与热平衡温度分析[J].机械传动,2017,41(4):89-94.LIUJ,LIUSJ,XUWB,etal.Lubricantperformanceopti⁃mizationandthermalbalancetemperatureanalysisofhigh⁃speedtraingearbox[J].JournalofMechanicalTransmis⁃sion,2017,41(4):89-94.㊃871㊃机床与液压第49卷[48]陈晓玲,刘松丽,黄智勇,等.高速列车传动齿轮箱浸油深度对平衡温度的影响[J].铁道学报,2008,30(1):89-92.CHENXL,LIUSL,HUANGZY,etal.Studyonthein⁃fluenceofimmersiondepthonequilibriumtemperatureofspurgearusedinhighspeedtrain[J].JournaloftheChi⁃naRailwaySociety,2008,30(1):89-92.[49]高军,李来顺,冯伟,等.动车组齿轮箱油中含硫添加剂损失的试验研究[J].润滑与密封,2016,41(12):129-133.GAOJ,LILS,FENGW,etal.Experimentalstudyonsul⁃furadditivelossoftrain⁃setgearboxlubricants[J].Lubri⁃cationEngineering,2016,41(12):129-133.[50]高军,李来顺,赵海板,等.高速动车组齿轮油换油周期研究[J].润滑与密封,2015,40(2):89-92.GAOJ,LILS,ZHAOHB,etal.Researchondraininter⁃valofgearboxoilsofhigh⁃speedelectricmultipleunit[J].LubricationEngineering,2015,40(2):89-92.[51]LINTJ,HEZY,GENGFY,etal.Predictionandexperi⁃mentalstudyonstructureandradiationnoiseofsubwaygearbox[J].JournalofVibroengineering,2013,15(4):1838-1850.[52]HUANGGH.Dynamicresponseanalysisofgearboxhous⁃ingsystemsubjectedtointernalandexternalexcitationinhigh⁃speedtrain[J].JournalofMechanicalEngineering,2015,51(12):95.[53]吴冬.高铁齿轮传动系统性能检测评价研究[D].大连:大连理工大学,2012.WUD.Researchontheevaluationoftestingperformanceforthetransmissiongearboxinhigh⁃speedtrain[D].Dalian:DalianUniversityofTechnology,2012.[54]马玉强,林新海,李枫.高速动车组齿轮箱的负压试验研究[J].机车车辆工艺,2016(6):1-3.MAYQ,LINXH,LIF.ResearchofthenegativepressuretestofthegearboxforhighspeedEMU[J].Locomotive&RollingStockTechnology,2016(6):1-3.[55]王泰.基于性能退化分析的高速动车组齿轮箱可靠性研究[D].成都:西南交通大学,2017.WANGT.TheresearchofEMUgearboxreliabilitybasedondegradationanalysis[D].Chengdu:SouthwestJiaotongUniversity,2017.[56]田勐.CRH380动车组福伊特齿轮箱深层涡流检测技术开发[C]//中国中车2016第二届轨道交通先进金属加工及检测技术交流会.长春:中国中车科技管理部,中车工业研究院有限公司,2016.[57]张伟伟.基于光纤布拉格光栅传感器的动车组齿轮箱振动监测系统设计与研究[D].开封:河南大学,2014.ZHANGWW.Thedesignandresearchofthevibrationmonitoringsystemforthegearboxofhigh⁃speedrailbasedonfiberBragggratingsensor[D].Kaifeng:HenanUniversity,2014.[58]邓晓宇.高速列车齿轮传动系统动态特性仿真与评价方法研究[D].成都:西南交通大学,2016.DENGXY.Studyonsimulationandevaluationmethodofdynamiccharacteristicsofgeartransmissionsystemofhighspeedtrain[D].Chengdu:SouthwestJiaotongUniversity,2016.[59]邢志伟,孙银生,邓晓丽,等.电动机车牵引齿轮设计概述[J].机械传动,2011,35(11):41-44.XINGZW,SUNYS,DENGXL,etal.Surveyontractiongeardesignofelectriclocomotive[J].JournalofMechani⁃calTransmission,2011,35(11):41-44.[60]刘忠明.中国战略性新兴产业研究与发展-齿轮[M].北京:机械工业出版社,2013.(责任编辑:张楠)(上接第172页)[5]GIESENU,MULLERS.ThevehicleofH⁃bahnsystemsinDortmunduniversity[J].VerkehrundThchnik,1983,36(10):371-382.[6]许桂红.地铁制动系统的研究与仿真[D].成都:西南交通大学,2014.XUGH.Researchandsimulationofmetrobrakingsystem[D].Chengdu:SouthwestJiaotongUniversity,2014.[7]张龙飞.低地板有轨电车制动系统性能研究[D].成都:西南交通大学,2018.ZHANGLF.Studyontheperformanceofbrakesystemforlowfloortram[D].Chengdu:SouthwestJiaotongUniversity,2018.[8]周纪武,纪铅磊,刘勇刚.浅谈城市轨道车辆制动冲击率的计算[J].铁道车辆,2017,55(4):30-31.ZHOUJW,JIQL,LIUYG.Calculationofbrakeimpactratioofurbanrailvehicles[J].RollingStock,2017,55(4):30-31.(责任编辑:张楠)㊃971㊃第4期杨树峰等:高速动车组齿轮箱设计研究现状及趋势㊀㊀㊀。
高铁技术的创新与发展趋势高铁技术作为现代交通行业的重要组成部分,近年来在我国取得了长足的进步,不断推动着我国的交通事业向前发展。
高铁技术的创新与发展趋势备受关注,下面将就高铁技术的创新和发展趋势进行分析。
一、动车组技术的创新动车组技术是高铁技术中的重要组成部分,随着技术的不断进步,动车组技术也在不断创新。
目前,我国已经成功运营了一批性能优良的动车组列车,如“复兴号”等。
未来,动车组技术将继续向更高速、更环保、更安全的方向发展,同时在车辆设计、智能控制系统等方面进行创新,以提升乘客出行体验。
二、线路建设技术的创新随着高铁线路的不断延伸和更新,线路建设技术也在不断创新。
未来,高铁线路的维护保养技术将更加智能化,可以实现线路状态的实时监测和预警,以确保高铁列车的安全运行。
同时,高铁线路建设将更加注重环保和可持续性,推动高铁绿色出行的发展。
三、供电技术的创新供电技术是高铁技术中的关键环节,直接关系到高铁列车的运行效率和能源利用。
未来,供电技术将更加智能化和高效化,采用更加节能环保的供电方式,如光伏发电和储能技术,以减少能源消耗和减低运营成本。
四、智能化技术的发展趋势随着信息技术的发展,高铁技术也将逐渐智能化。
未来,高铁列车将更加自动化和智能化,实现列车的自主控制和运行,同时借助大数据分析和人工智能等技术,提升高铁列车的运行安全性和舒适性。
五、国际合作与共享发展高铁技术的创新与发展离不开国际合作与交流。
未来,我国将继续加强与国际 high-speed railway 的合作,共同推动 high-speed railway 技术的发展与创新,促进国际 high-speed railway 技术的共享与发展。
综上所述,高铁技术的创新与发展趋势将以智能化、绿色化、国际化为主要特点,不断推动高铁行业的发展,为人们的出行提供更加便捷、快速和舒适的选择。
相信未来,高铁技术将取得更加辉煌的成就,为国家的交通事业做出更大的贡献。
高铁交通的发展现状和未来发展趋势高铁交通作为一种快速便捷的交通方式,在近几十年内取得了巨大的发展。
尤其在中国,高铁的发展速度更加惊人,成为全球高铁的领导者。
本文将介绍高铁交通的发展现状,并展望其未来的发展趋势。
高铁交通的发展现状高铁交通的发展在全球范围内都取得了重要的成就。
从技术层面上来看,高铁列车的速度越来越快,列车的安全性也得到了很大的提升。
例如,中国的“复兴号”列车,最高时速可达350公里,是全球最快的列车之一。
此外,高铁的舒适性也得到了提高,列车上配备了高级座椅和先进的娱乐系统,为乘客提供了更好的旅行体验。
在全球范围内,高铁交通的发展不仅仅体现在技术上,还体现在路网的建设上。
中国是高铁交通的领导者,高铁网络覆盖了全国许多主要城市。
相比之下,其他国家的高铁网络仍然相对不完善,但是随着技术的发展和政府的支持,高铁交通在其他国家也在逐渐发展壮大。
高铁交通的未来发展趋势高铁交通的未来发展充满着希望和挑战。
在技术层面上,我们可以预见高铁的速度将更加快速。
科学家和工程师正在致力于研究和开发更先进的高铁技术,以提高列车的速度和安全性。
例如,超导磁悬浮列车技术(Maglev)已经取得了突破性的进展,预计在未来几十年内会投入商业运营。
除了技术上的发展,高铁交通在环境保护、优化线路规划等方面也有很大的潜力。
高铁列车相比于传统的航空和公路交通,能够减少大量的二氧化碳排放,对应对气候变化有着显著的意义。
因此,随着环保意识的增强和政府对环保交通的支持,高铁交通在未来必将迎来更大的发展机遇。
此外,高铁交通还可以促进城市之间的联系和经济发展。
高铁的速度快、安全,使得人们在城市之间旅行更加便捷,有利于促进经济的发展和交流。
因此,高铁交通的发展也将成为推动城市经济繁荣的关键因素之一。
总结起来,高铁交通在过去几十年内取得了重大的发展成就,并且未来有着广阔的发展前景。
高铁交通的技术将不断突破,速度将进一步提高,并且在环境保护、经济发展等方面发挥更大的作用。
高速铁路技术的创新与发展随着国内高速铁路的不断发展,高速铁路技术也在不断创新和发展。
高速铁路是一种高速、高度自动化、高效、安全的铁路交通方式。
本文将从高速铁路技术的创新、高速列车的研发、高速铁路建设的发展以及高速铁路未来的发展方向四个方面进行探讨。
一、高速铁路技术的创新高速铁路技术的创新是高速铁路运行的关键。
随着科技的发展,高速铁路技术也在不断升级。
一些最新的技术正在被应用于高速铁路系统中。
首先,高速铁路系统采用了列车控制系统,这种新的系统能够通过无线通信、卫星定位等技术,实现列车自动控制和调度。
另外,高速铁路系统还采用了信息化技术,建立了列车运行监控中心和调度中心,实现了列车的实时监控和调度。
其次,高速铁路系统采用了新型轨道交通控制技术,这种技术可以通过大数据分析、云计算等技术,实现铁路交通流的控制和调度。
这种技术可以大大提高铁路运行的安全性和效率。
此外,高速铁路技术的创新还包括材料的创新、动力系统的创新等。
新的材料能够提高列车的运行速度和舒适度,新的动力系统能够提高列车的加速度和能效。
二、高速列车的研发高速列车的研发也是高速铁路技术的重要组成部分。
目前,国内外的高速列车研发已经取得了很大的成果。
国内高速列车的代表是中国制造的Fuxing CR400AF-G和CR400AF。
这两种列车采用了全气动外形设计和密码屏蔽技术,能够在350公里/小时的速度下运行。
而国外高速列车的代表是日本的新干线和德国的ICE列车系列。
新干线采用了磁浮技术和电动力传动技术,而ICE列车系列则采用了气浮技术和柴油机动力传动技术。
高速列车的研发将会继续进行。
未来的高速列车可能采用更加先进的材料和技术,运行速度可能会进一步提高。
三、高速铁路建设的发展高速铁路建设是高速铁路技术的重要应用。
中国是世界上高速铁路建设最为发达的国家之一。
目前,中国的高速铁路建设已经达到了2.2万公里,高速铁路和城际铁路已经覆盖了全国大部分城市。
高速铁路的建设已经给人们的日常生活带来了很大的改变,人们可以更加方便地出行和旅游。
高速列车技术发展趋势论文学院:交通运输工程学院专业班级:交通设备嘻嘻嘻班姓名:手动阀学号:*********高速列车技术的发展趋势啥方法都摘要:高速铁路是一个集各项先进铁路技术、先进运营管理方式、市场营销和资金筹措在内的十分复杂的系统工程,具有高效率的运营体系,它包含了基础设施建设、机车车辆配置及站车运营规则等多方面的技术与管理. 随着高速铁路的发展,高速铁路渐渐成为交通运输的主流。
我国近年来在高速铁路的建设上取得了巨大的成绩,而相伴而来的便是如何保持先进技术的问题。
这需要把握高铁技术的发展趋势并介入研究。
本文从世界与中国高速列车技术现状与发展出发,分析中国高速铁路建设发展现状与趋势,总结主要类型以及世界各国高速列车发展趋势。
高速列车是指最高行车速度每小时达到或超过200公里的铁路列车。
世界上最早的高速列车为日本的新干线列车,1964年10月1日开通,最高时速每小时443公里,运营速度可达每小时270公里或300公里。
此后,许多国家相继修建高速铁路,列车运行速度也一再提高。
1.世界各国目前高速列车发展概况到目前为止,开通高速列车的国家有日,中,法、德,意,英,俄,瑞典等国。
其中法国的TGV系列创下钢轮式实验速度之最,2007年其速度曾达到每小时574.8公里。
高速列车一般指时速在200公里以上的列车。
20世纪50年代初,法兰西共和国首先提出了高速列车的设想,并最早开始试验工作。
1976年,用柴油电动机车牵引的高速列车在英国投入服务,这是当时英国最快的载客列车,最高时速达250公里。
法兰西共和国则以电力机车为研究对象,其高速电力引列车在1978年曾创下时速260公里的纪录。
1981年10月,新的高速列车“T.G.V”在巴黎─里昂干线正式投入使用。
采用流线形造型的“T.G.V”和和常规列车相比,空气阻力减小了三分之一。
它装有大功率动力装置,具有较强的爬坡能力,可以高速爬上35%的陡坡,也可在坡路上起动,使用的仍是普通铁轨线路,曾创下时速380公里的纪录。
高速铁路建设的发展现状与未来趋势展望近年来,高速铁路建设在中国取得了巨大的进展,成为了现代交通的重要组成部分。
从最早的京沪高铁到现在的“八纵八横”高铁网,高铁已经成为了人们出行的主要选择。
本文将探讨高速铁路建设的发展现状,并对未来的趋势做出展望。
高速铁路建设得以如此迅速发展,离不开中国政府的大力支持。
近年来,中国政府将高铁发展列为国家战略,不仅在资金上予以大力支持,更在政策上给予了一系列优惠政策。
这种政策的支持,使得高铁建设可以快速落地,推动了中国高铁产业的发展。
目前,中国高铁已经走在了世界的前列。
中国的高铁线路总里程已经超过了3万公里,居世界第一。
不仅如此,中国高铁的技术和设备也越来越先进。
例如,中国自主研发的“复兴号”动车组,在速度、舒适性和能源利用等方面均取得了显著的突破。
高铁建设的迅猛发展,也为中国经济的发展带来了巨大的推动力。
高铁的运输效率高,运输能力大,不仅使得人们的出行变得更加方便快捷,也使得不同地区之间的物流更加畅通。
这对于促进区域经济一体化、优化资源配置有着积极的意义。
然而,高铁建设也面临着一些挑战和问题。
首先,高铁建设的投资巨大,往往需要数百亿甚至上千亿元的资金。
这对于一些经济欠发达的地区来说,无疑是个巨大的负担。
其次,高铁的运营成本也很高,维护和运营的费用常常超过了票价收入。
这对于高铁运营商来说,也是个相当头疼的问题。
未来,高速铁路建设仍将保持稳定的发展态势。
首先,中国政府将继续加大对高铁建设的投资力度,提升高铁的发展速度和水平。
其次,高铁技术的进一步创新将进一步提升高铁的安全性、舒适性和运营效率。
再次,高铁网的延伸将使得更多的城市和地区可以享受到高铁带来的便利。
未来高铁建设还将面临一些挑战。
首先,高铁的竞争对手逐渐增多。
随着航空、公路等交通方式的发展,高铁在一些特定的线路上可能会面临竞争压力。
其次,高铁建设也面临着环境保护的问题。
高铁对土地、水资源的需求很大,同时也会带来一定的能源消耗和排放。
高速铁路的技术创新和发展趋势一、前言随着时代的发展,人们对于交通方式的需求不断增加,同时对于速度、舒适度等方面的要求也越来越高。
高速铁路作为一种新型的高效便捷的交通方式,被越来越多的人所接受和喜爱。
本文将从技术创新和发展趋势两个方面来探讨高速铁路的发展,以期为高铁行业的发展做出一点贡献。
二、技术创新1.智能化技术随着科技的不断进步,智能化技术在高速铁路行业中的应用也越来越广泛,比如自动驾驶技术、人脸识别技术、智能安检技术等都可以提升高铁的安全性和运营效率。
2.轨道技术轨道技术可以影响高速铁路的稳定性和运行速度,因此轨道技术的发展也是高速铁路发展的重要方向。
在轨道技术领域的研究和创新中,不断出现了S形轨道、双层球轨道等新型轨道技术,这些新技术可以提高高速铁路的速度和稳定性,同时也减轻了高铁轨道的运维成本。
3.动车组技术动车组技术是高速铁路的关键技术之一,发展动车组技术可以提高高铁的速度和稳定性。
随着动车组技术的不断发展,各大动车组制造商也在不断推出新的产品和技术。
比如中车唐山公司推出的动车组列车T1,使用了多种高新技术,可以使列车的速度达到350公里每小时,提升了高铁的运营效率和安全性。
三、发展趋势1. 信息化信息化是未来高速铁路发展的重要方向。
随着互联网的普及,高速铁路也将成为信息化时代的重要元素。
未来高速铁路将实现信息化的运营管理和智能化的服务。
未来的高速铁路将会更加智能、便捷、快速。
2. 绿色环保未来高速铁路将会更加注重环境保护和能源节约,不断提高高铁的能源利用效率和环境友好性。
未来高速铁路的能源使用将更加依靠清洁能源,比如太阳能和风能等。
同时,高速铁路将更加注重垃圾分类和回收,实现绿色出行。
3. 直达服务未来高铁将更加关注旅客的出行体验,提供更加舒适和方便的乘车服务。
未来的高铁车站将形成直达式的服务结构,使乘客出行更加便捷。
同时高铁服务将更加智能化,乘客可以通过手机APP等方式快速预订乘车服务,提高了乘车的效率和舒适度。
CRH2型动车组制动系统分析自从1825年世界上第一条铁路建成并通车开始,铁路逐渐成为了交通运输中的重要运输方式之一。
快速、可靠、舒适、经济和环保是铁路在与其他运输方式的竞争中取胜的先决条件,许多国家都在通过新建或改建既有线发展高速铁路。
国际上一般认为,高速铁路动车组是最高运行时速在200公里以上的铁路运输系统。
所谓动车组就是由若干动力车和拖车或全部由动力车长期固定连挂在一起组成的车组。
高速动车组的牵引动力配置基本上有两种型式,即集中配置型和分散配置型。
传统的机车牵引形式就是牵引动力集中配置,列车由一台或几台机车集中于一端牵引。
由于机车总功率受到限制,难以满足进一步提高速度的要求。
动车组编组中的车辆全部为动力车,或大部分为动力车,即牵引动力分散配置。
由于动车组可以根据某条线路的客流量变化进行灵活编组,可以实现高密度小编组发车以及具有安全性能好、运量大、往返不需掉转车头、污染小、节能、自带动力等优点,受到国内外市场的青睐,应用也越来越广泛,被称为铁路旅客运输的生力军第六次铁路大提速,以“和谐号”为代表的高速动车组,如梭箭般穿行于大江南北,将中国铁路带入高速时代,我国既有线路列车运行速度也一举达到世界先进水平,铁路运输事业呈现飞速发展全新局面,高速动车组以其安全,准时,快速,舒适,节能,环保,等诸多优点,高速动车组是在现代科学技术的基础上发展起来,同时也带动并促进了科学技术发展,高速动车组有别于现在运用的内燃,电力机车。
其区别在于动车组各部件大量运用高新技术,特别是在转向架结构,车体轻量化,列车动力分配,电传动控制技术,列车信息网络及制动系统都具有各自的高科技含量。
高速动车组制动系统具有先进科技技术,其中以CRH2型动车组最为出名。
CRH2型高速动车组制动系统采用电气指令是微机控制直通式电控制动,制动指令的接收,处理和电气制动与空气制动协调配合等,一般都是有微机来完成,动车组各车辆上的制动控制装臵由制动控制单元,EP阀,中继阀,空重调整阀,紧急制动电磁阀等组成,载荷调压装臵直接来自空气簧空气压力,空气弹簧压力通过传感器转化为与车重相应的电信号,制动控制单元根据制动指令及车重信号计算出所需的制动力,并向电气制动控制装臵发出制动信号,电气制动控制装臵控制电气制动产生作用,并将实际制动力的等值信号反馈到制动控制器,制动控制器进行计算,并把与计算结果相应的电信号送到中继阀,中继阀进行流量放大后,使制动缸获得相应的压力,拖车常用制动时,制动控制装臵的动作过程与动车的基本相同,但是因为没有电气制动,所有不必进行电气制动与空气制动的协调,所需制动力全部通过EP阀转化为相应的空气压力信号,然后由中继阀使制动缸产生相应的制动力。
高速铁路1 高速铁路简述1.1 高速铁路的定义1.2 铁路发展到高速铁路的历程(1笔带过,主要强调第一条高铁的产生)世界高速铁路发展历程(3次浪潮)1.3高速铁路的优缺点及经济效益1.4现今高速铁路的技术1.5 世界高速铁路的发展动向2.6世界高速铁路发展趋势(1)21世纪的铁路运输业将会出现轮轨系高速铁路的全面发展,全球性高速铁路网建设的时期已经到来。
(2)高速铁路的优势已为世人所认同,其战略意义成为各国政府的共识,高速铁路促进地区之间的交往和平衡发展。
(3)对速度的追求和对技术的创新永无止境。
速度和技术成为引领世界高速铁路发展的重要因素;高速轮轨技术成为当今世界高速铁路建设的潮流;而磁悬浮技术代表高速铁路未来的发展方向。
(4)高速铁路的技术创新正在向相关领域辐射和发展。
2 我国高速铁路的发展2.1 我国高速铁路的发展史兴建高速铁路的动议早在20世纪80年代中期就为我国的有识之士所提出,十多年来,国家有关部门组织了数以百计的专家学者从各个方面对高速铁路项目进行了详细的考察、分析和论证。
经过多次的反复和论争,各方面的意见已经大致趋同:高速铁路技术可行、经济合理、社会效益良好、国力能够承受,围此应该建设,而且应该及早建设。
1998年3月,全国人代会在“十五”计划纲要草案中提出建设高速铁路。
中国高速铁路的建设背景我国自1876年出现第一条铁路以来已经120多年了。
遗憾的是百余年来,我国的铁路事业无论从横向上还是从纵向上来讲.都是远远落后的,同其他国家比较,我国的铁路在运营里程,运输效率,技术水准,装备质量等方面相差极远,令人堪忧。
改革开放20多年来,国民经济持续高速发展对于交通运输的巨大需求常常得不到满足,铁路沦落成为了“瓶颈”产业。
低速成为制约国民经济快速发展的瓶颈。
高速铁路速度快、运量大、能耗少、污染小、安全、舒适、占地少,上世纪九十年代初,我国铁路专家提出,中国修建高速铁路势在必行。
高速铁路是一个高科技技术,包括了宇航、冶金、材料、电子、机械等等高技术所形成的综合性的技术配套系统,需要做大量的准备工作。
高速铁路技术的发展及其优化随着近年来快速城市化、交通拥堵问题的加剧,高速铁路的发展逐渐成为了中国发展的重要任务之一。
高速铁路的快速、便捷、安全、舒适,既能满足人们的出行需求,还可促进区域经济发展,提高中国的综合竞争力。
在这篇文章中,我们将重点探讨高速铁路技术的发展及其优化。
高速铁路技术的发展历程高速铁路技术的发展历程可追溯到20世纪60年代日本推出的“新干线”高速列车。
这项创新性的技术在全球范围内引起了广泛的关注。
1981年,我国开始启动铁路运行速度提高技术研究,针对我国铁路特殊的技术条件,研发了88km/h、100km/h、120km/h等一系列速度提高技术。
1997年,中国引入了法国TGV高速铁路技术,并开始在京沪、京广、京九等线路上建设高速铁路。
至2007年,我国形成了以CRH2、CRH3、CRH5等列车为代表,由中国自主研发、全球瞩目的高速铁路技术。
高速铁路技术的优化方向尽管我国高速铁路技术在短时间内已经取得了惊人的进展,但在实际应用过程中,还存在一些技术方面的问题,因此要继续优化技术。
首先,安全性是优化的重点。
在高速铁路的建设和运营过程中,必须重视安全技术,保障铁路的安全运行。
在设计和研发阶段,必须将车辆、运行设备、安全管控系统等诸多方面的技术进行全面优化。
其次,定位精准也是优化方向之一。
在高速铁路建设的过程中,定位精准可以保证高速铁路的运行精度,减少事故的发生概率。
因此在工程设计和建设过程中,要注重地球物理探测技术、地形图测量技术、地理信息系统等技术的使用,保证高速铁路的准确性和精准性。
再次,科技创新是优化的重要手段。
应用新技术,如人工智能、5G、物联网等,可以有效提升高速铁路的运行效率、降低运营成本、提高客户满意度等。
同时,还可以推进铁路行业向智能化、网络化方向的快速转型和发展。
高速铁路与区域经济发展高速铁路的建设与发展,对中国的区域经济发展具有巨大的促进作用。
在高速铁路建设完成后,不仅可以缩短地域之间的距离,提高区域内贸易交流和沟通的效率,也可以增加人员流动,激发市场活力,推动经济发展。
超高速列车技术的发展与应用前景超高速列车是指时速超过350公里的高速列车,通常被称为“磁浮列车”或“高速磁浮列车”。
随着科技的不断进步,超高速列车技术已经越来越成熟,其发展和应用前景也越来越广阔。
超高速列车的发展历程超高速列车的发展可以追溯到20世纪60年代初,当时日本开始研制出了第一代磁浮列车。
然而由于技术不成熟,这个项目最终没有得到实际应用。
随着科技的进步,磁浮列车的技术也在不断发展。
1972年,德国开始研制“磁浮测试车”,并于1979年进行试运行。
1984年,日本又开始了第二次磁浮列车研制项目。
1997年,上海磁浮列车开始试运行。
随后,德国、中国和日本等国家也陆续投入了更多的资源和资金来加速研发进程。
超高速列车的技术原理超高速列车采用的是“磁悬浮”技术,其原理是利用磁力原理使列车浮在轨道上。
磁浮列车的轨道上覆盖着一层超导体,而列车底部则安装有一套超导磁浮系统。
当电流通过轨道上的超导体时,其产生的磁场将与列车底部的超导磁浮系统相互作用,从而产生支撑力,使得列车在轨道上悬浮行驶。
此外,超高速列车还配备了强大的电动力系统和先进的运行控制系统。
通过控制电动机的转速和输出电流,可以控制列车的速度和加减速度,从而保证列车稳定、平稳地行驶。
运行控制系统则可以监测列车的各项运行数据,并根据数据分析结果进行运行调整和控制,以确保在高速行驶过程中的安全和可靠性。
超高速列车的应用前景超高速列车可以大大提高交通效率和安全性,具有广泛的应用前景。
以下是超高速列车的几个主要应用领域:1. 高速铁路交通超高速列车可以通过专门的高速铁路线路运行,实现速度更快、靠近城市中心、交通拥堵减轻、环保节能等多个优势,大大改善人们的出行环境。
2. 跨境旅游超高速列车可以极大的缩短国际交通的时间成本,使得跨国游客可以更加方便、快捷地旅游和购物。
3. 快递物流超高速列车可以将商品快速地运送至各个目的地,是快递物流等领域的一种高效运输方式。
各国高速铁路的现状与发展 24 推荐
各国高速铁路的现状与发展(组图)
日本 继东京——大阪东海道515公里新干线建成通车以后,其他主要运输方向也都修建了高速新干线,主要有东海道(东京——大阪)、山阳(大阪——博多)、东北(东京——盛冈)、北陆(高崎——长野)和九州(八代——鹿儿岛)等新干线组成,总长2175.2公里。
日本正在实施扩大全国高速铁路网建设规划,初步计划到2013年建成的线路有:从八户到青森长96.5公里高速线(东北新干线延长线);从青森到札幌长300公里的高速线(北海道新干线);长野—富山—小松—大阪长473公里的高速线(北陆新干线延长线);福冈—熊本—八代长130.9公里和福冈——长崎长140公里的九州新干线的2条支线。
法国 1981年开通运营的巴黎——里昂TGV东南线,是欧洲第一条高速铁路客运专线,此后法国又陆续建成了其他一些运输方向的高速线(现在统称LGV高速线)。在这样的线路上运行的是TGV系列高速列车,列车最高运行时速从最初的260公里提高到300多公里。
法国国内已经形成运营线路总里程达到4500公里的4条高速走廊:从巴黎到法国东南部地区的LGV
Sud-Est走廊;从巴黎到大西洋沿岸方向的LGV Atlantique走廊;连接巴黎与法国北部地区、北欧国家和英国的LGV Nord-Europe走廊等。 现在正在和计划修建的新高速铁路有:连接巴黎和斯特拉斯堡长405公里的LGV
Est高速线(2007年6月巴黎——波德列库尔长300公里区段已建成开通运营);连接图尔和波尔多长361公里的LGV
Atlantique走廊的南部方向支线等。 此外,法国还准备修建两条国际联运高速线:长250公里的里昂——都灵(意大利)高速线(2006年2月部分建成开通);长340公里蒙彼利埃——巴塞罗那(西班牙)高速线。
德国 德国高速铁路主要采用的是客货混运运输组织模式,已建成总长约2620公里的高速运输走廊:汉堡—汉诺威—卡塞尔—法兰克福—美因—卡尔斯鲁厄;汉堡—汉诺威—富耳达—维尔茨堡—纽伦堡—慕尼黑;柏林—布劳恩斯魏克—卡塞尔—富耳达—法兰克福—曼海姆—斯图加特—乌耳姆—慕尼黑;科隆——法兰克福。其中包括新建列车允许最高运行时速280公里(科隆——法兰克福线为300公里)的长802公里的客运专线,按最高运行时速200公里进行技术改造的长1200公里的既有线和最高运行时速达到160公里的快速线。
. 1 / 9'. 世界各国高速动车组技术的发展现状 1.1概述 先来介绍一下“动车组”这个概念:把动力装置分散安装在每节车厢上,使其既具有牵引力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组。带动力的车辆叫动车,不带动力的车辆叫拖车组.动车组技术源于地铁,是一种动力分散技术。一般情况下,我们乘坐的普通列车是依靠机车牵引的,车厢本身并不具有动力,是一种动力集中技术。而采用了“动车组”的列车,车厢本身也具有动力,运行的时候,不光是机车带动,车厢也会“自己跑”,这样把动力分散,更能达到高速的效果。 1.2动车组分类 按照动力排布:动力集中,动力分散 按照用途:客运,货运(比如日本M250,法国TGV行邮),特殊用途(轨道检测等) 按照性能:高性能,低性能。 1.3牵引方式 动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。 动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限速区段较多的线. 2 / 9'. 路。另外,列车中一节动车的牵引动力发生故障对全列车的牵引指标影响不大。动力分散的电动车组的缺点是:牵引力设备的数量多,总重量大。动力集中的电动车组也有其优点,动力装置集中安装在2~3节车上,检查维修比较方便,电气设备的总重量小于动力分散的电动车组。动力集中布置的缺点是动车的轴重较大,对线路不利。 1903年7月8日,在德国柏林诞生了一种“动车+无动力车厢+动车+动车+无动力车厢+动车”这样编组的列车。这种无动力车厢不会隔断动车之间的联系,因为它安装了重联线。与动车相对,这种专门为动车组准备的无动力车厢叫从车,中文翻译为拖车。 8月14日,由接触网供电的单相交流电动车组问世。 10月28日,西门子公司制造的三相交流电动车组进行高速试验,首创时速210. 2公里的历史性记录。 一战结束,内燃机车开始普及,内燃动车出现。 二战结束,内燃机车也能重联了,内燃动车组出现。 60年代,日木决心新建高速客运铁路网,于是有了世界上首列运营用高速动车组—新干线—0系。 70年代,法国试制了燃气轮机高速动车组—TGV-0。 80年代,高速铁路网在欧洲延伸,风驰电掣的各系TGV以300km/h的速度成为法国人的骄傲。 90年代,TGV试验速度突破500km/h。 新世纪,TGV试验速度突破500km/h 。 2.1国外动车组状况 . 3 / 9'. 日木的高速列车以动力分散为主,大编组、高功率、小轴重。1964年10月,日木先于其他国家开通了世界第一条高速铁路一东海道新干线(东京一新大阪的高速客运专线),最高运行时速为210公里。至今已40多年过去,高速列车从东海道新干线的O系,发展了100系、200系、300系、400系、500系、700系、El系(MAX)、E2系、E3系等。 新干线里最受关注的车辆,是运营速度最快,体现出九十年代高科技水准的500系电动车组。生产于1995-1998年,16辆编组,最高运行时速为300公里。500系的车头流线型可谓十足,弯曲部分长达9米多。远远看过去,500系就象一条细长的蛇。所有新干线车辆中,流线型最好的就数500系了。 700系名为铁路之星Rail Star,这是日本最新也是最先进的一款电动车组。正式投入运行是在1999年3月11日。700系C sets模式每组车16节车厢,E sets模式有8节车厢。最高运营时速为285km/h。由于车体采用了中空铝型材,700系重仅708吨。车的编组方式为12动4拖,功率13200kw。700系全长约400米,共载1323名乘700系的车体是用铝合金压制成的中空外壳,内部填充的是吸音,防震的复合材料。 日木高速铁路的发展有以下几个特点:高速列车采用动力分散型,轴重小,这样的设计使得列车的安全性增强;线路中桥隧比重大,线路的标准不断提高;列车运行密度大,定员多,旅客输送最大;安全性能好,旅客死亡事故少。 . 4 / 9'. 德国是铁路客运速度提高较快的国家之一。1962年德国研制的“菜茵金子”号客车的构造速度已达160km/h,1974年ET403型电动车组的最高运行速度为160km/h, 1977年提高到200km/h, 1985年制造出1CE型高速列车。由5辆车组成的1CE列车于1985年交付试验。头车和尾车为动车,各长20. 8m,自重78.2t,采用三相交流牵引装置,每辆动车的功率为4209kw。中间3辆拖车的长度均为24. 34m。 德国的ICE第一代列车(ICE1)于1988年就跑出了4OOkm/h的速度,列车编组为2辆动力头车牵引10--14节客车不等。该列车的设计把乘客的舒适度放在第一位,由于德国铁路穿越隧道较多,故对列车的密封性设计也仿效日本新干线列车进行设计,为欧洲第一代气密性列车,随后改进制成ICE第二代(1CE2)和1CE第三代(ICE3)产品。 由于ICE3要在莱茵-科隆问线路上运行,该线路设计坡度为40‰,并以300km/h运行,为了有足够的粘着力,故该车采用动力分散型。 德国高速铁路发展有其一定特点:它采用三相交流传动技术:计算机控制列车制动:轻型车体构造;列车有自诊断技术:统一调度指挥。 法国高速铁路线上采用的电动车组在牵引动力上的布置与日本不同,它采用的是动力集中式,只在列车两端的头车(或与头车相临的客车的一端)装有牵引动力装置。法国第一条铁路线(巴黎东南新干线)于1972年动工,1983年投入运用。运用TGV-PSE电动车组,最高时速为270公里。在巴黎东南新干线通车后,法国继续扩大高速铁路线,1990年大西洋新干线(巴黎一勒芒、图尔)正式通. 5 / 9'. 车,采用TGV-A 电动车组,最高运行时速为300公里。 “欧洲之星”高速列车是法国TGV列车的派生系列,目前运行在伦敦至巴黎和布鲁塞尔之间、该车载客量794人、12根动轴,总功率12000kw,时速达300km/h,编组型式为2L18T,铰接式转向架。 法国高速铁路发展的特点是:动车组采用动力集中方式及铰链式车厢:多电流制供电与简单链型悬挂接触网,能使用一般线路的1500V3000V直流供电,也能使用高速线25kV交流供电;采用符合ETCS标准的TVM列车控制系统;注重系统的安全性与可靠性;线路要求高 标准高质量 2.2中国动车组发展足迹 2004年4月1日,国务院召开会议专题研究铁路机车车辆装备有关问题,形成《研究铁路机车车辆装备有关问题的会议纪要》,明确了“引进先进技术、联合设计生产、打造中国品牌”基木原则,确定重点扶持国内几家机车车辆制造企业、引进少量原装、国内散件组装和国内生产的项目运作模式。 2004年7月29日,国家发改委与铁道部联合印发《大功率交流传动电力机车技术引进与国产化实施方案》和《时速200公里动车组引进与国产化实施方案》。 2004年8月,铁道部公开招标采购时速200公里动车组项目。 2005年1 0月,铁道部公开招标采购时速300公里动车组项目。 2006年7月31日,国内首列国产化时速200公里动车组. 6 / 9'. 下线。 2006年9月,铁路部门在胶济线以及第六次人提速既有线改造区段组织了多次全线拉通试验和提速平推试验,动车组进入运行试验。 2007年2月,动车组以160公里的时速投入春运。 2007年4月18日,动车组全面上线投入运营。 2008年8月1日,动车组投入运营的京津线是中国首条高速铁路客运专线,是中国进入高铁时代的标志。 2.3和谐号动车组 中国铁道部将所有引进国外技术、联台设计生产的CRH动车组车辆均命名为“和谐号”。通常用来指2007年4月18日起在中国铁路第六次提速调图后开行的CRH动车组列车。CR H为英文缩写,全名China Railway High-speed,中文意为“中国铁路高速”,是中国铁道部对中国高速铁路系统建立的品牌名称。中国铁路开行的CRH动车组已知有CRH1, CRH2,CRH3,CRH5等型。 CRH5一中国北车集团长春轨道客车股份有限公司联合法国阿尔斯通,引进法国阿尔斯通的Pendolino宽体摆式列车技术,取消了装设的摆式功能,车体以法国阿尔斯通为芬兰国铁提供的SM3动车组为原型。由北车长春轨道客车股份有限公司负责国内生产。CRH5A为8节车厢编组座车动车组,200公里级别〔营运速度200km/h,最高速度250km/h〕. CRH380A: . 7 / 9'. 2010年9月,铁道部下发《关于新一代高速动车组型号、车号及坐席号的通知》,正式将四方机车车辆股份的CRH2-380型动车组型号名称更改,其中短编组动车为CRH380A,而长编组动车为CRH380AL。 CRH380A采用.与CRH2C一样的6动2拖的编组方式,牵引功率为9600千瓦,使用SS400+型高速受电弓,以及在受电弓。以及两侧为立体围护整流罩。列车设有二等座车/观光车(ZEG)l辆(1车)、一等座车(ZY2辆)3车、4车其中3车带有一等包厢)。 2010年12月3日,中国铁路在京沪高铁先导段联调试时再次创造奇迹,国产“和谐号 "CRH380A新一代高速动车组最高时速达到486. 1公里,风一样的速度,再次刷新世界路运营试验最高速。 3以下是各国高速动车组的图片