小结与思考(一)
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
第三章 中心对称图形(一)小结与思考(第1课时)审核人:赵友忠、夏建平【目标导航】1. 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行梳理,使所学知识系统化.2. 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自己的观点.3. 通过“小结与思考”的教学,培养学生归纳、反思的意识.【要点梳理】1. 图形的旋转:在平面内,___________________________________,这样的图形运动称为图形的旋转,这个定点称为_____________,旋转的角度称为_____________. ①旋转前、后的图形全等.②对应点到旋转中心的距离相等.③每一对对应点与旋转中心的连线所成的角彼此相等. 2. 中心对称.把一个图形绕着某一个点旋转180°,_____________________,那么称这两个图形关于这一点对称.也称这两个图形成中心对称,这个点叫做_____________,两个图形中的对应点叫做_____________.注意:①中心对称是旋转的一种特例,因此,成中心对称的两个图形具有旋转图形的一切性质.②成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分.3. 中心对称图形.把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心.中心对称图形上的每一对对应点所连成的线段都被对称中心______________. 4..1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形.(2)成中心对称的两个.【问题探究】知识点1.图形旋转的画法(重点,掌握)例1.已知线段AB 和点O 按下面的方法画出线段AB 绕点O 按逆时针方向旋转100°后的图形 解:知识点2.成中心对称图形的画法(重点,运用)例2.△ABC 和一点O ,画△ABC 关于点O 成中心对称的三角形;(1)点O 在△ABC 外;(2)点O 与△ABC 的一个顶点重合 (3)点O 是△ABC 的一边 BC 的中点【变式】等边三角形ABC 的3个顶点都在圆上,请把这个图形补成一个中心对称图形. 知识点3.寻找旋转图形(重点,运用)例3.如图:△ABC 和△ADE 都是顶点为45°的等腰三角形,BC 、DE 分别是两个三角形的底边.图中的△ACE可以看成是哪个三角形通过怎样的旋转得到的? 解:【变式】如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C •顺时针方向旋转90°得到△DCF ,连接EF .若∠BEC =60°,则∠EFD 的度数为( )(A )10° (B )15° (C )20° (D )25° 知识点4.寻找中心对称图形(重点,运用)例4.如图:ABCD 的对角线相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F 图中关于点O 成中心对称的三角形、四边形有多少对?请将它们分别表示出来. 解:知识点5.旋转图形中的计算(重点,掌握)例5.已知:如图,在△ABC 中,∠BAC =120°,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D按顺时针方向旋转60°后得到△ECD ,若AB =3,AC =2,求∠BAD 的度数与AD 的长. 解:【课堂操练】1. 在线段、等边三角形、等腰梯形、矩形、平行四边形、菱形、正方形、圆这些图形中,既是中心对称又是轴对称的有 ( ) A 、3个 B 、4个 C 、5个 D 、6个 2. 下列图形中,是中心..对称图形的是( )3. 如图,以左边图案的中心为旋转中心,将图案按 时针方向旋转 度即可得到右边图案.4. 如图,在正方形ABCD 中,点E 是AD 的中点,点F 是BA 延长线上一点,AF =21AB ,△ABE 可以通过绕A 点逆时针旋转到△ADF 的位置,则旋转的最小角度为 .A5. 如图是一个平行四边形土地ABCD ,后来在其边缘挖了一个小平行四边形水塘EFGH,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),A EB简要说明理由.6. 画图题:已知□ABCD ,试用三种方法将□ABCD 分成面积相等的四部分.7. 如图,四边形ABCD 中,AD ∥BC ,DF=CF ,连结AF 并延长交BC 延长线于点E.(1)图中哪两个三角形可以通过怎样的旋转而相互得到?(2)四边形ABCD 的面积与图中哪个三角形的面积相等? (3)若AB=AD +BC ,∠B=70°,试求∠DAF 的度数.8. (2010·浙江台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”). ②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.B CB CB C图1图2图3EEEB图4 A【参考答案】【要点梳理】1. 将一个图形绕一个定点旋转一定的角度 旋转中心 旋转角2. 如果它能够与另一个图形重合 对称中心 对称点3. 平分【问题探究】例1.略 例2.略 【变式】略例3.△ABD 绕点A 逆时针方向旋转45° 【变式】B 例4.略 例5.60°, 5【课堂操练】1. C2. C3. 顺,904. 90°5. 经过四边形ABCD 和四边形EFGH 对角线的交点6.7. △ADF 和△ECF , △ABE ,55° 8. (1)① =② > (2)>证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°. ∴∠ADM =∠GDM , ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM . ∵GM +GK >MK ,∴AM +CK >MK . (3)∠CDF =15°,23=AMMK .。
学生消费状况调查个人小结与反思【实用版4篇】《学生消费状况调查个人小结与反思》篇1在进行了一段时间的学生消费状况调查之后,我有了一些重要的发现和反思。
这份小结不仅是对我调查结果的总结,也是对我在这个过程中的思考和发现的一个记录。
调查结果显示,学生的消费状况因个人情况的不同而异。
有的人花费很多,有的人则比较节俭。
但是,无论是哪种情况,我发现以下几个问题:1. 消费的多元化:我发现学生们在消费上的选择非常多样化。
他们不仅要满足基本的生活需求,还要追求更多的娱乐、学习和个人发展。
这反映出我们的社会已经变得更加多元化,学生们的消费观念也随之改变。
2. 金融知识的缺乏:在调查中,我发现许多学生对基本的金融知识了解不足。
这可能会导致他们在消费和理财上做出错误的决定。
3. 消费习惯的影响:家庭背景、社交环境等因素对学生的消费习惯有显著影响。
一些学生可能因为家庭的经济状况而过度消费,或者因为社交环境的影响而形成不良的消费习惯。
反思我的调查过程,我意识到我在数据收集和分析上的不足。
我在未来应该更加注重数据的准确性和全面性,以便更好地反映学生的消费状况。
同时,我也意识到我在问卷设计上的不足,需要在未来改进问卷,使其更具有针对性和有效性。
总的来说,这次调查让我更深入地了解了学生们的消费状况,也让我意识到了我在调查过程中的不足。
《学生消费状况调查个人小结与反思》篇2在进行了为期一个学期的学生消费状况调查后,我有了一些深刻的反思和总结。
我想分享一下我的调查结果和个人小结。
调查结果:1. 大多数学生在购物方面相对理性,会根据自身需求和经济能力进行选择。
其中,55%的学生每月的消费在1000元到2000元之间,20%的学生每月消费在2000元以上。
2. 学生们在餐饮方面的支出较大,平均每月约800元。
其中,25%的学生选择在学校食堂就餐,30%的学生选择外卖。
3. 娱乐支出方面,学生们每月平均花费约500元。
其中,电影、音乐、游戏等娱乐软件占比较大,约占总娱乐支出的60%。
08-09学年度第一学期九年级数学教学案第一章小结与思考(1)学习目标:通过对本章知识的小结与梳理,进一步掌握等腰三角形的性质和判定、直角三角形全等的判定、角平分线的性质定理与判定定理、特殊四边形(平行四边形、矩形、菱形、正方形)的定义、性质和判定;等腰梯形的性质和判定;中位线定理,并会灵活运用.学习重点:性质定理和判定定理的应用 学习难点:性质定理和判定定理的应用 学习过程: 一、基础练习1、等腰三角形的一个底角为030,则顶角的度数是 度.2、等腰三角形的两边长分别为4和9,则第三边长为 .3、 下列命题为真命题的是( )A :三角形的中位线把三角形的面积分成相等的两部分;B :对角线相等且相互平分的四边形是正方形;C :关于某直线对称的两个三角形是全等三角形;D :一组对边平行,另一组对边相等的四边形一定是等腰梯形4、下列命题是假命题的是( )A :四个角相等的四边形是矩形;B :对角线互相平分的四边形是平行四边形;C :四条边相等的四边形是菱形;D :对角线互相垂直且相等的四边形是正方形5、如图在A B C D 中,∠ABC 的平分线交AD 于E ,且AE =2,DE =1,则A B C D 的周长等于 . 6、如图,点D 、E 、F 分别是A B C △三边上的中点.若A B C △的面积为12,则D EF△的面积为 . 二、例题学习1、如图,在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD ⊥CF ;(2)连接AF ,试判断△ACF 的形状,并说明理由.(第5题)B A CF ED2、已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE.(1)试判断四边形AODE的形状,说明理由; (2)请你连结EB、EC.并证明EB=EC.3、如图,在直角梯形纸片A B C D中,A B D C∥,90A∠= ,C D AD>,将纸片沿过点D的直线折叠,使点A落在边C D上的点E处,折痕为D F.连接E F并展开纸片.(1)求证:四边形AD EF是正方形;(2)取线段A F的中点G,连接E G,如果B G C D=,试说明四边形G B C E是等腰梯形.4、如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12 BE.三、作业:见作业纸。
课题:第5章《二次函数》小结与思考 主备人:张亚元 学生姓名一、学习目标:注重知识梳理,让零散的知识结构化、系统化;注重问题解决,将类似的问题联系起来,形成方法的总结;重点培养数形结合的思想。
二、学习重点与难点:⑴体会二次函数的意义,了解二次函数的有关概念;⑵会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并能确定其最值; ⑶会运用待定系数法求二次函数的解析式;⑷利用二次函数图象的性质解决问题,并对解决问题的策略进行反思. 三、复习指导:问题一:已知二次函数y=ax 2+bx+c 的部分图象如图1所示,图象经过(1,0从中你能得到哪些结论?问题二:问题三:(1)若把图1的函数图象绕着顶点旋转180度,则能得到函数的表达式是 ,若再将得到的函数图象向上平移2个单位, 向右平移3个单位得新函数问题四:根据图象回答问题:(1)在此题中,方程ax 2+bx+c=0的根的情况如何确定?为什么?(2)m 满足什么条件时方程ax 2+bx+c=m ,①有两个不相等的实数根?②有两个相等的实数根?③没有实数根?问题五:根据图象回答问题:四、反馈练习::41B 01)0(22)两点,则,(),,(交于与该抛物线,若直线如图-++=≠+=A c bx ax y k m kx y ;的解为方程 )1(2m kx c bx ax +=++;的解为不等式 )2(2m kx c bx ax +>++;的解为不等式 )3(2m kx c bx ax +<++填,则)也是抛物线上的两点,(,若,(___4B )y A(-2,2121<>y y y ;则所示抛物线上的两点,)是图,(,若2121___12B )y A(-3,y y y -??m 12B )y A(m,212121y y y y y m >=+②则①当所示抛物线上的两点,)是图,(,变式:若1、用配方法将二次函数1232--=x x y 化成()k h x a y +-=2的形式是 .2、已知二次函数32++=bx x y 的图象的顶点的横坐标是1,则b= .3、已知抛物线()8122++-=x y ,抛物线与y 轴的交点坐标是 ;求抛物线与x 轴的两个交点间的距离是 .4、已知直线y=x+m 与抛物线2x y =相交于两点,则实数m 的取值范围是( ). (A)m ﹥41-; (B)m ﹤41-; (C)m ﹥41; (D) m ﹤41.5、若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 轴的正半轴,与x 轴有两个交点,则下列结论正确的是( ).(A)a ﹥0,bc ﹥0; (B)a ﹤0,bc ﹤0; (C) a ﹤0, bc ﹥0; (D) a ﹥0, bc ﹤06、已知二次函数y=ax 2+bx+c 的图象如下图所示,则下列5个代数式: ab ,ac ,a -b+c ,b 2-4ac ,2a+b 中,值大于0的个数有( )A. 5B. 4C. 3D. 2 7、课本34页第7题。
学业水平阶段小结与个人反思
《学业水平阶段小结与个人反思》
在过去的一段时间里,我对自己的学业水平进行了总结和反思。
通过回顾自己的学习过程和成果,我发现自己在某些方面取得了进步,但同时也存在一些需要改进的地方。
在学习方面,我能够认真对待每一门课程,努力掌握知识和技能。
我积极参与课堂互动,提出问题并与老师和同学进行讨论。
我按时完成作业和课外阅读,以巩固所学内容。
然而,我发现自己在时间管理上还有待改进。
有时候我会过于拖延,导致任务无法按时完成。
此外,我在学习中缺乏主动探索和深入思考的精神,对于一些复杂的问题往往只是停留在表面理解。
针对这些问题,我制定了一些改进计划。
首先,我要提高自己的时间管理能力,合理安排学习任务和时间,避免拖延。
我会制定详细的学习计划,并设定合理的目标,以提高学习效率。
其次,我要培养主动探索和深入思考的习惯。
对于复杂的问题,我会主动寻找相关资料进行深入研究,提高自己的分析和解决问题的能力。
除了学习方面,我也意识到个人全面发展的重要性。
我要注重身心健康,保持积极的心态和良好的生活习惯。
我会参加适当的体育锻炼和课外活动,以缓解学习压力,增强身体素质。
通过这次学业水平阶段小结与个人反思,我对自己的学习情况有了更清晰的认识。
我将认真对待自己的不足之处,并采取积极的改进措施。
我相信通过不断努力和自我提升,我能够取得更好的学业成绩和个人发展。
第十章 二元一次方程组小结与思考1教学目标1.使学生熟练掌握二元一次方程组的解法.2.体会方程组的价值,感受数学文化. 教学难点掌握解二元一次方程组的基本思路. 教学过程 一. 复习引入:学生回忆解二元一次方程组的基本思路. (1)代入消元 (2)加减消元 二.基础练习:1.下列各组x,y 的值是不是二元一次方程组⎩⎨⎧=-=+52243y x y x 的解?(1)⎩⎨⎧-==12y x (2)⎩⎨⎧=-=22y x (3)⎩⎨⎧==13y x2.已知二元一次方程组⎩⎨⎧=+=-b y x a y x 22的解⎩⎨⎧-==53y x求a,b 的值.3.根据下表中所给的x 值以及x 与y 的关系式,求出相应的y 值,然后填入表内:根据上表找出二元一次方程组⎩⎨⎧-=xy 10的解.4.解二元一次方程(1)⎩⎨⎧=-=+1352y x y x (2)⎩⎨⎧=-=+5.0259.243y x y x三.例题讲解:例1.写出一个二元一次方程,使得⎩⎨⎧==11y x ⎩⎨⎧==22y x 都是它的解,并且求出x=3时的方程的解.例2.对于等式y=kx+b,当x=3时,y=5;当x=-4时,y=-9,求 当x=-1时y 的值.例3.已知方程组有相同的解,求a 、b 的值.四.巩固提高:1. 已知()032=+-++y x y x ,求x,y 的值.2.a 得解乙看错b 得解a 、b 的值3.已知代数式q px x ++2.(1)当l x =时,代数式的值为2;当2-=x 时,代数式的值为11,求p 、q 的值; (2)当25=x 时,求代数式的值. 五.归纳总结:解二元一次方程组的基本思路:1.代入消元法2. 加减消元法【课堂检测】一.选择题:1、若1122=--+-b a b a y x 是二元一次方程,那么的a 、b 值分别是 ( ) A 、1,0 B 、0,-1 C 、2,1 D 、2,-32、下列几对数值中哪一对是方程5414x y +=的解 ( )A 、12x y =⎧⎨=⎩B 、21x y =⎧⎨=⎩C 、32x y =⎧⎨=⎩D 、41x y =⎧⎨=⎩3、下列二元一次方程组中,以为12x y =⎧⎨=⎩解的是 ( )A 、135x y x y -=⎧⎨+=⎩B 、135x y x y -=-⎧⎨+=-⎩C 、331x y x y -=⎧⎨-=⎩D 、2335x y x y -=-⎧⎨+=⎩4、若2(341)3250x y y x +-+--=则 x 的值是 ( ) A 、-1 B 、1 C 、2 D 、-25、已知132x y-=,可以得到用x 表示y 的式子是 ( )A 、223x y -=B 、2133x y =-C 、223x y =-D 、223xy =-二.填空题:6、在y k x b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = . 7、在349x y +=中,如果26y =,那么x = .8、已知43x y =⎧⎨=⎩是方程组512ax by bx ay +=⎧⎨+=-⎩的解,则a b += .9、写出一个以02x y =⎧⎨=⎩为解的二元一次方程组 .10、关于x 、y 的方程组⎩⎨⎧-=+=-225453by ax y x 与⎩⎨⎧=--=+8432by ax y x 有相同的解,则()b a -= .⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x 三. 解答题:11、10325u v u v +=⎧⎨-=⎩ 12、13、 4253715x yx y ⎧-=⎪⎪⎨⎪-=⎪⎩ 14、3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩16、甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程(1)中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中(2)的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.。
阶段小结与个人反思的内容学生阶段小结与个人反思作为一名学生,经历了一段时间的学习和成长。
回首这个阶段,我想要对自己进行一次小结和反思,从而更好地规划未来的学习和发展。
在学习的过程中,我意识到要想取得好的成绩和进步,首先要树立正确的学习态度和目标。
在这个阶段,我得到了很多的认知,明确了自己的学习目标,并为之努力奋斗。
我明白了知识的重要性和学习的价值,坚信只有不断地提升自己,才能在竞争激烈的社会中立于不败之地。
其次,我也发现自己在学习方法上还存在一些问题,需要加以改进。
在过去的学习中,我常常采用死记硬背的方式,这样只是停留在表面的记忆,没有深入理解和运用知识。
在未来,我要更加注重理解、思考和应用。
我会尝试多种学习方法,比如制定学习计划,做好笔记,积极参与讨论,从而更好地理解和掌握知识。
另外,我也发现自己在时间管理上存在不足。
有时候,我会过于沉迷于游戏或者社交媒体,导致时间的浪费。
我意识到要想更有效地利用时间,就要合理规划和安排。
我会尽量减少对手机和电脑的依赖,设定自己的学习时间表,并严格按照计划进行学习。
同时,我也要学会合理分配时间,不仅要注重学习,还要注重休息和娱乐,保持身心的健康。
此外,我也意识到提升自己的综合素质非常重要。
学校的学习仅仅是基础,还需要在其他方面进行拓展和培养。
我会积极参加各种社团活动,提高自己的组织能力和领导能力。
我也会鼓励自己多读书,培养阅读兴趣和写作能力,提升自己的表达能力和思维能力。
此外,我也打算学习一门乐器或者参加一项体育运动,锻炼身体和培养兴趣爱好。
此次的阶段小结和个人反思,让我更加明确了自己的努力方向和目标。
我深知只有不断地超越自己,才能不断进步。
未来的学习之路并不会一帆风顺,但我相信只要我坚持努力,就一定能够取得好的成绩和进步。
我将时刻保持一颗积极向上的心态,迎接未来的挑战通过对自己学习方法和时间管理的反思,我意识到在重理解、思考和应用方面需要加强。
我将采取制定学习计划、做好笔记和积极参与讨论等方法,以更好地掌握和应用知识。