矢量控制与直接转矩控制之我见
- 格式:pdf
- 大小:137.02 KB
- 文档页数:4
矢量控制与直接转矩控制技术区别WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
摘要:本文对目前交流电机变频调速控制系统流行的矢量控制(VC)和直接转矩控制(DTC)的发展历史与现状,并对两者转矩响应,稳态特性,及无速度传感器控制进行了比较与探讨。
关键词:矢量控制,直接转矩控制,转矩响应,稳态特性,无速度传感器控制1.前言转载于自1971年德国西门子公司F.Blaschke发明了基于交流电机坐标交换的交流电机矢量控制(以下简称VC)原理以来,交流电机矢量控制得到了广泛地应用。
经过30年的产品开发和工程实践,矢量控制原理日趋完善,大大小小的交流电机变频调速控制系统大多采用矢量控制,使交流电机调速达到并超过传统的直流电机调速性能。
1985年德国鲁尔大学M.Depenbrock教授提出了不同于坐标变换矢量控制的另外一种交流电机调速控制原理——直接转矩控制(以下简称DTC),鲁尔大学的教授曾多次在国际学术会议并到中国来介绍DTC技术,引起了学术界极大的兴趣和关注。
DTC原理具有不同于VC 的鲜明特点:·不需要旋转坐标变换,有静止坐标系上控制转矩和磁链·采用砰-砰控制·DTC与脉宽调制PWM技术并用·转矩响应快·应用于GTO电压型变频器的机车牵引传动DTC的出现引起交流电机控制理论的研究热潮,国内不少高校对DTC技术及系统进行深入研究,不少文章提出一些有益的改进方法,对DTC理论与实践作出贡献。
但应该指出,DTC 引入中国的初期,人们的视角多集中在DTC的不用旋转变换和砰-砰控制上。
随着计算机技术的飞速发展,VC的旋转坐标变换的技术实现已不成为问题,而由于DTC技术应用实例局限于GTO电压型变频器的机车牵引传动,使得国内学术界和变频器制造商没有条件对实用的DTC技术以及DTC变频器的静态和动态特性进行深入研究。
1995年瑞士ABB公司第一次将DTC技术应用到通用变频器上,推出采用DTC技术的IGBT 脉宽调制变频器ACS600,随后又将DTC技术应用于IGCT三电平高压变频器ACS1000,近期推出的用于大型轧钢,船舶推进的IGCT变频器ACS6000也采用了DTC直接转矩控制技术。
矢量控制与直接转矩控制的比较矢量控制是交流电机最为完美的控制方案;直接转矩控制是一种粗况的控制方案。
1971年,F Blaschke比较系统地提出了矢量控制理论。
矢量控制是通过坐标变换和矢量旋转,将交流电机完全等效为直流电机,然后应用成熟的直流电机控制方案,控制交流电机。
因此从控制方案上讲,应用矢量控制的交流调速系统和直流调速系统具有同样的控制性能。
又由于交流电机没有换向器,而且转子结构的特殊性,使得交流调速系统的最终控制性能要优于直流调速系统。
矢量控制系统的原理框图如下,矢量控制理论的提出,被认为是交流电机控制理论发展过程中的里程碑。
同其他理论一样,矢量控制理论从提出到在实践中获得成功应用,也经历了坎坷的过程。
1.在当时的情况下,矢量控制的计算量相对较大,各个子单元的计算速度能否满足控制系统整体要求,2.磁场定向的准确性,受电机参数时变的影响较大。
因此,在应用的初期,实际效果差强人意。
人们在理论的先进性,和实际的应用效果之间做了一定的取舍。
在此背景下,于1977年,A.B.P iunkett在IEEE 杂志上首先提出了直接转矩的控制思想,1985年,由德国鲁尔大学的Depenbrock教授首次取得了实际应用。
直接转矩控制德语称之为Direkte Selb-Stragelung, 英语称之为Direct Self-Control。
由于它控制的是转矩,因此后来也经常称之为Direct Torque Control。
直接转矩控制的思想源于矢量控制,其原理框图如下,P214 图6-62由于直接转矩控制是在两相静止坐标系内,省去了矢量控制中的旋转变换,因而使计算量减少,从而提高了系统整体的运行速度。
这在90年代初,鉴于当时的集成芯片的水平,这样的减少还是很有必要的。
另外,由于直接转矩控制采用定子磁场控制,避免了转子电阻时变的影响,因此在一定程度上减弱了电机参数时变对系统的影响。
直接转矩控制在克服了矢量控制弊端的同时,这种粗况式控制方式也暴露出固有的缺陷。
直接转矩控制与矢量控制的区别简单地说,直接转矩控制与矢量控制的主要区别如下:1.控制特点矢量控制以转子磁通的空间矢量为定向(基准)。
为此,在控制过程中:(1)需要电动机的参数多,定向准确度受参数变化的影响较大:(2)要进行复杂的等效变换(直一交变换、2/3变换等),调节过程需要若干个开关周期才能完成,故响应时间较长,大于100ms。
而直接转矩控制以定子电压的空间矢量为定向(基准)。
为此,在控制过程中:(1)只需要电动机的定子电阻一个参数,既易于测量,定向准确度也高;(2)不必进行等效变换,故动态响应快,只需1~5m;(3)容易实现无速度传感器控制。
2.脉宽调制矢量控制采用正弦脉宽调制( SPWM)方式,故:(1)必须有SPWM发生器,结构复杂;(2)输出电流的谐波分量较小,冲击电流小;(3)载波频率是固定的,电磁噪声小。
直接转矩控制不采用正弦脉宽调制( SPWM)方式,而采用“砰-砰”控制(双位控制)方式,逆变电路的开关状态(是否有电压输出)取决于实测转矩信号TS*与给定转矩信号TG*之间进行比较的结果:TS*>TG*→逆变电路有电压输出;TS*<TG*→逆变电路无电压输出。
因此:(1)不需要PWM发生器,故结构简单,且转矩响应快;(2)输出电流的谐波分量较大,冲击电流也较大,逆变器输出端常常需要接入输出滤波器或输出电抗器,但这又将导致输出电压偏低;(3)逆变电路的开关频率不固定,电动机的电磁噪声较大。
根据清华大学反复实验以及用户使用后的反馈信息来看,直接转矩控制和矢量控制是各有优缺点的。
除了上面所述的比较外,一般说来,直接转矩控制在高频运行和低频运行时的实际性能都不如矢量控制。
目前,两种控制方式正在互相渗透。
例如,有的变频器在矢量控制方式中加入转矩控制功能;而采用直接转矩控制方式的变频器在低频段也正在借助矢量控制的方法来改善其低频运行特性。
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
EA 32 | 电气时代2004年第3期业界&市场IEEE电力电子学会北京分会主席王正元先生矢量控制和直接转矩控制是当前在交流异步电动机高性能变频调速装置中得到广泛应用的两种控制方案。
近些年来,这两种方案都在被不断完善,制造出的产品的性能日益优化。
从实验到理论探讨这两种方案的特点、优点和弱点,确定它们各自最佳的应用场合,最大限度地发掘交流变频调速技术在不同领域应用中的潜力,有着十分重要的现实意义。
本文试图从市场开拓、技术演进和领导决策的三个角度说明讨论矢量控制和直接转矩控制两种方案的背景和目的。
开拓新市场的需要最近20多年来,经过各方努力,交流电动机调速技术和产品的节能效益和技术经济指标的优越性已为社会各界接受。
特别是近十多年,变频调速在各种调速方法的竞争中更具生命力,是公认的交流电机调速的主流技术。
改变供电频率即可改变交流电动机的转速,但是不同应用领域对调速的范围和调速精度的要求是不同的。
磁链开环的“VVVF(调压调频)”方案在风机、泵类和压缩机等通用机械的流量调节中得到应用业已成熟。
但是,在许多工业、交通部门,例如轧钢、有色金属板箔压延、造纸、榨糖等有比较严格的工艺要求,如电动汽车、电力机车(包括电牵引的内燃机车)、矿井卷扬、电梯以及全电化船舶等牵引应用要求较高的控制精度、更快的响应速度、更宽的调速范围。
为适应这些市场的需求,必须有高动态性能的变频器面市。
近来,在市场的宣传中,特别是某些商业炒作中,借着“从研发顺序看——矢量控制在先,直接转矩控制在后”的事实,出现一种说法:“VVVF控制是变频调速的第一代技术,矢量控制是第二代技术,直接转矩控制是第三代技术。
”这在某些用户,部分制造厂商,以至政府决策人员中造成了一定的困惑和认识混乱。
“VVVF是第一代技术”是大家公认的。
但是,矢量控制和直接转矩控制是属于前后不同的两代技术吗?直接转矩控制方案是比矢量控制方案更先进的新一代控制技术吗?为了澄清这个源于市场宣传的问题,有必要通过实验测量和理论分析,给出科学的回答。
矢量控制与直接转矩控制技术区别文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
浅谈矢量控制与直接转矩控制技术作者:周云哲来源:《职业·中旬》2010年第02期矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
一、矢量控制技术简述具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式包括基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
1.基于转差频率控制的矢量控制方式基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
其最大特点是可以消除动态过程中转矩电流的波动,从而提高通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用这种矢量控制方式。
2.无速度传感器的矢量控制方式无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
其基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
3.有速度传感器的矢量控制方式采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。
由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。
矢量控制与直接转矩控制的区别及优略矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。
由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。
矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f 进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
矢量控制与直接转矩控制技术矢量控制实现的基本原理就是通过测量与控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流与转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体就是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 与产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值与相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式与有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机就是指转子定子同时通电,异步机就就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样就是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点就是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都就是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式就是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置就是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想就是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)与转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)与转矩电流的指令值与检测值达到一致,并输出转矩,从而实现矢量控制。
矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
变频器直接转矩控制与矢量控制有何不同?
1、矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,对电动机在励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。
目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。
基于转差频率的矢量控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。
无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。
这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂。
2、直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。
即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。
矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
永磁同步电机矢量控制和直接转矩控制的对比研究郭力源,李美芳(山西大学,山西太原030013)第1期(总第244期)2024年2月山西电力SHANXIELECTRICPOWERNo.1(Ser.244)Feb.2024摘要:随着永磁材料的发现和现代电机控制技术的不断发展,三相永磁同步电机的控制方式逐渐演变为矢量控制和直接转矩控制两大流派,并各有千秋。
矢量控制和直接转矩控制虽然在控制系统组成、控制过程、形式以及效果等方面存在差异,但是2种控制方式拥有相同的理论基础,控制本质是一致的。
通过Matlab/Simulink 软件仿真和转矩公式分析进行了验证。
关键词:矢量控制;直接转矩控制;永磁同步电机中图分类号:TM341文献标志码:A文章编号:1671-0320(2024)01-0037-040引言目前,对三相永磁同步电机的控制应用有三大策略,分别为调压调频VVVF (variable voltage andvariable frequency )控制、矢量控制FOC (field orient⁃ed control )和直接转矩控制DTC (direct torque con⁃trol )。
其中,VVVF 控制是早期对电机控制的一种策略,但是其控制系统中没有反馈的存在,所以这种控制策略不能实现对电机的精准调速,一般适用于定量控制和恒压恒频控制。
FOC [1-7]控制是20世纪70年代由西门子公司提出的,其关键是将电机的定子电流转换到以转子磁链定向的旋转坐标系下,然后对电机定子电流进行解耦,定子电流被分为与磁链同方向的励磁电流和与磁链正交方向的转矩电流。
控制励磁电流不变,通过改变转矩电流即可达到对电机的调速。
这一控制类似于直流电机,维持直流电机的励磁电流不变,改变电机的电枢电流可以达到调速效果。
矢量控制系统中一般会包含转速环和电流环的“双闭环”,使得对电机的调速更加精准。
但是,在矢量控制中对定子电流进行坐标变换及解耦的过程运算量极大。
矢量控制与直接转矩控制之我见My Opinion on Vector Control and Direct Torque Control艾默生网络能源有限公司变频器开发部 刘宏鑫MDI R&D Department of Emerson Network Power Co.,LTD Liu Hong Xin 摘要:本文阐述采用矢量控制与直接转矩控制技术的变频器性能的优劣,提出了两种技术的发展方向。
关键词:矢量控制 直接转矩控制 变频器Abstract: The merits and demerits of inverter using VC and DTC are discussed in detail. The trend of VC and DTC is presented in this paper.Keywords:Vector Control Direct Torque Control Inverter一、矢量控制与直接转矩控制技术发展自从70年代初期西德Blaschke等人首先提出矢量控制(Vector Control,简称VC)理论,到80年代中期德国人M.depenbrock等人首先提出直接转矩控制理论(Direct Torque Control,简称DTC)以来,全世界各地的高校、科研机构、各大变频器公司投入巨大资金和精力来研究,高性能交流变频调速技术如雨后春笋般的涌现出来。
由于矢量控制与直接转矩控制技术均是基于异步电机的动态模型,而且均采用外环为速度环,内环为转矩和磁链控制,从而实现转速和磁链的近似解耦,获得了较好的动态性能[1]。
矢量控制的研究重点在于矢量控制环路的结构、无速度传感器速度辨识和电机参数的离线和在线辨识。
DTC的重点在于无速度传感器速度辨识、磁链和转矩自控制、脉冲优化选择器等方面。
两者的目的在于提高系统转矩控制动态响应、稳态速度精度(速度辨识的精度、转矩脉动大小、冷态热态情况下的自适应能力)、系统的鲁棒性。
矢量控制与直接转矩控制的比较矢量控制与直接转矩控制的比较矢量控制是交流电机最为完美的控制方案;直接转矩控制是一种粗况的控制方案。
1971年,F Blaschke比较系统地提出了矢量控制理论。
矢量控制是通过坐标变换和矢量旋转,将交流电机完全等效为直流电机,然后应用成熟的直流电机控制方案,控制交流电机。
因此从控制方案上讲,应用矢量控制的交流调速系统和直流调速系统具有同样的控制性能。
又由于交流电机没有换向器,而且转子结构的特殊性,使得交流调速系统的最终控制性能要优于直流调速系统。
矢量控制系统的原理框图如下,矢量控制理论的提出,被认为是交流电机控制理论发展过程中的里程碑。
同其他理论一样,矢量控制理论从提出到在实践中获得成功应用,也经历了坎坷的过程。
1.在当时的情况下,矢量控制的计算量相对较大,各个子单元的计算速度能否满足控制系统整体要求,2.磁场定向的准确性,受电机参数时变的影响较大。
因此,在应用的初期,实际效果差强人意。
人们在理论的先进性,和实际的应用效果之间做了一定的取舍。
在此背景下,于1977年,A.B.P iunkett在IEEE 杂志上首先提出了直接转矩的控制思想,1985年,由德国鲁尔大学的Depenbrock教授首次取得了实际应用。
直接转矩控制德语称之为Direkte Selb-Stragelung, 英语称之为Direct Self-Control。
由于它控制的是转矩,因此后来也经常称之为Direct Torque Control。
直接转矩控制的思想源于矢量控制,其原理框图如下,P214 图6-62由于直接转矩控制是在两相静止坐标系内,省去了矢量控制中的旋转变换,因而使计算量减少,从而提高了系统整体的运行速度。
这在90年代初,鉴于当时的集成芯片的水平,这样的减少还是很有必要的。
另外,由于直接转矩控制采用定子磁场控制,避免了转子电阻时变的影响,因此在一定程度上减弱了电机参数时变对系统的影响。
矢量控制与直接转矩控制之我见
My Opinion on Vector Control and Direct Torque Control
艾默生网络能源有限公司变频器开发部 刘宏鑫
MDI R&D Department of Emerson Network Power Co.,LTD Liu Hong Xin 摘要:本文阐述采用矢量控制与直接转矩控制技术的变频器性能的优劣,提出了两种技术的发展方向。
关键词:矢量控制 直接转矩控制 变频器
Abstract: The merits and demerits of inverter using VC and DTC are discussed in detail. The trend of VC and DTC is presented in this paper.
Keywords:Vector Control Direct Torque Control Inverter
一、矢量控制与直接转矩控制技术发展
自从70年代初期西德Blaschke等人首先提出矢量控制(Vector Control,简称VC)理论,到80年代中期德国人M.depenbrock等人首先提出直接转矩控制理论(Direct Torque Control,简称DTC)以来,全世界各地的高校、科研机构、各大变频器公司投入巨大资金和精力来研究,高性能交流变频调速技术如雨后春笋般的涌现出来。
由于矢量控制与直接转矩控制技术均是基于异步电机的动态模型,而且均采用外环为速度环,内环为转矩和磁链控制,从而实现转速和磁链的近似解耦,获得了较好的动态性能[1]。
矢量控制的研究重点在于矢量控制环路的结构、无速度传感器速度辨识和电机参数的离线和在线辨识。
DTC的重点在于无速度传感器速度辨识、磁链和转矩自控制、脉冲优化选择器等方面。
两者的目的在于提高系统转矩控制动态响应、稳态速度精度(速度辨识的精度、转矩脉动大小、冷态热态情况下的自适应能力)、系统的鲁棒性。
由于两者算法对于数字化要求非常高、对运算的速度要求也非常高,因此受CPU速度的限制,真正高性能全数字化的无PG变频器在90年代中后期才陆续出现的。
表1是1999年8家公司商用化无速度传感器的性能比较[2]。
近几年来,变频器的控制水平又有很大提高,如日立SJ300具有电压检测电路,可以达到1∶500以上的调速范围,而且零速可以达到150%的转矩,富士VG7由于具有电压检测电路,开环辨识精度较高,号称达到开环伺服水平。
由于欧洲变频器研发工作着重于V/F 控制或者闭环矢量控制模式,欧洲开环矢量控制变频器的技术水平与日本的差距较多。
由于欧洲的制造业非常发达,推动了伺服控制技术的发展,相比日本有一定的优势。
二、通用变频器控制技术的现状
目前,在我国通用变频器的80%左右的市场仍旧被V/F或者E/F变频器所占有。
采用矢量控制或者DTC的高档变频器由于价格的差异只占有20%左右的市场。
在高档变频器领域,只有ABB推出ACS600/ACS800变频器采用DTC技术,其他各大公司均采用VC技术,最近ABB推出的ACS550也为矢量控制。
VC技术成为业界主流。
具体原因将在下文阐述。
目前按照开环运行的性能划分,排序大概为日立、安川、富士、ENP、CT、西门子、三菱、AB、ABB等,按照闭环性能,目前排序大概为安川、KEB、ENPC、CT、LENZE、三菱、西门子、ABB。
另外,随着微机控制芯片价格的下降,逐步出现了以CTUNIDRIVE-SP为代表的统一变频器,即将V/F控制、开环矢量控制、闭环矢量控制、通用伺服及永磁同步电机控制技术于一体的超级变频器,给用户的使用带来很大的方便。
三、矢量控制与直接转矩控制产品性能对比
从表2可以看出,DTC除动态响应外,其他方面均不比VC好。
由于用户最关心的是电机速度的精度和转矩的脉动,而VC的动态响应又满足了市场的绝大多数场合,这也是国外变频器厂家普遍采用矢量控制的根本原因。
四、矢量控制与直接转矩控制产品技术实现的对比
开环DTC控制的基本实现框图如图1所示,开环VC控制的基本实现框图如图2所示。
图1开环DTC的控制的基本实现框图
i
图2开环VC控制的基本实现框图
从两者的对比可以看出,DTC需要完成速度调节器、速度估计、定子磁链计算、电机转矩估计、定子磁链与转矩的比较及PWM脉冲优化选择等;VC需要完成速度调节器、速度估计、转差计算、同步角速度的积分、电流与电压旋转变换、D、Q轴的电流调节运算等。
从表面看,VC控制的工作量有两次旋转变换,好像运算工作量比DTC的工作量大,对CPU的要求低。
实际上,这是错误的概念。
由于DTC的磁链和转矩控制采用乒乓控制,转矩脉动与调节频率成反比,即使采用根
据磁链和转矩误差大小进行PWM脉冲优化选择,也只能够在一定程度上减小输出转矩的脉动。
尽管ABB的ACS600采用硬件完成定子磁链与转矩的比较及PWM脉冲优化的选择,采样周期为25微秒,但是由于定子磁链与转矩的变化比较缓慢,开关状态在一个周期内不规则变化,而且受开关功率器件的限制,开关频率一般小于15KHZ,实用范围小于10KHZ,造成转矩脉动仍旧较大,开关频率的不确定,造成电磁噪音很大。
25微秒的运算周期,即使采用目前最快的DSP也难以实现。
如果要达到同样的性能,采用VC控制的话,电流环的运算速度只要在125微秒~500微秒之间,就可以达到更好的控制效果。
这就是VC 被各在公司看好和采用的现实原因。
最近,由于FPGA的价格降低,采用全硬件矢量控制变频器成为现实,由于电流环的采样可以通过高速V-F来实现,整个电流环的速度小于10微秒,整个系统的性能与算法与CPU速度的关系已经很小了,此时VC的各项控制性能远优于DTC。
目前IR已经推出了带PG的各种电机专用芯片,性能达到目前业界最高水平。
五、矢量控制与直接转矩控制技术产品化的研究方向
矢量控制与直接转矩控制技术发展至今天,数字处理技术已经发展到很高的水平,但是理论上仍旧没有突破。
尽管两者对于电机的控制效果具有异曲同工之效,但是在具体的性能指标、具体实现的难易程度等细节方面还是存在很大的差异。
由于以上原因,笔者认为从产品化工作的考虑,今后技术研究工作可能主要集中在以下几个方面:
a) 两者算法优点的整合,达到既快又准的目的;
b) 调节器的优化设计,提高动态响应、减小超调;
c) 控制环路的优化,提高系统稳定性,降低技术实现的难度;
d) 死区补偿的深化研究,减小电流失真度,抑制转矩脉动;
e) 过调制的深化研究,减小电压失真度,抑制高频转矩脉动,提高高频带载能力;
f) 速度辨识算法的研究。
速度辨识算法必须与控制环路的研究配套进行,而且必须与输出电压获取方法(检测/指令)结合研究;
g) 定、转子参数自适应,提高无PG稳态精度和系统鲁棒性,有PG的动态响应;
h) 专用IC研制。
参考文献:
1、陈伯时,“高性能的通用变频器”,第二届变频器行业企业家论坛论文集,P10~P11,2003,中国,成都。
2、Mequon,“AC Drives:Year 2000(Y2K) and Beyond”,IEEE-APEC’99MARCH 14-18,1999。
简历:男(1969-),1991年毕业于西安理工大学自动控制专业,1996年获得电力电子专业硕士学位。
主要从事变频器及其应用控制系统科研、教学工作,期间获得多项国家及省部级科技进步奖。
1997年加盟艾默生网络能源有限公司,从事变频器产品开发工作。