第四章直接转矩控制系统
- 格式:ppt
- 大小:1.30 MB
- 文档页数:84
直接转矩控制原理直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。
电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。
传统直接转矩控制方法偏差分类:磁链:1,需要增大2,需要减小转矩:1,需要增大2,不变3,需要减小可见共有6中要求控制状态。
在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。
仿真系统中这个功能由滞环比较单元与查表单元结合产生。
一、引言电动机调速是各行各业中电动机应用系统的必需环节。
直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。
交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。
直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。
1.交流传动的发展简述首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接转矩控制(DTC)调速系统。
由于VVVF系统只是维持电动机内的磁链恒定,并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。
矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。
但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。
1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。
直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。
永磁同步电动机直接转矩控制系统的设计摘要直接转矩控制(DTC),又称为转矩矢量控制(TVC),是近年来发展起来的一种新型的异步电机控制方案,这种方案系统结构简单,转矩响应好,其控制思想已经推广用于永磁同步电动机的控制,本文介绍了永磁同步电动机的几种直接转矩控制方案,磁链转矩的估计方法等。
对永磁同步电动机直接转矩控制运行机理进行了研究,在此基础上开发了一套基于TMS320LF2407的永磁同步电动机直接转矩控制交流调速系统实验验证了该策略可用于永磁同步电动机控制,实验还表明永磁同步电动机直接转矩控制具有优良的转矩快速动态响应特性和对系统参数摄动、外干扰具有很强的鲁棒性等优点。
实验系统安全可靠运行表明该调速系统具有优良的故障检测和保护功能,硬件设计思想合理。
关键词:永磁同步电动机直接转矩控制故障检测与保护控制方案Study of Direct Torque Control of Permanent MagnetSynchronous MotorAbstractDirect Torque Control (DTC) technique, which is also called Torque Vector Control (T VC), is a new control scheme for induction motor drives recent years. The control system is very simple of a good dynamic performance and the control scheme has been extended to Permanent Magnet Synchronous Motors(PMSM) Several control schemes of direct torque control for PMSM drives and estimation technique of flux linkage and torque.Direct torque control(DTC) of permanent magnet synchronous motor(PMSM) was research, and a PMSM DTC system based on TMS320LF2407 was developed ,Experimental results verified the feasibility of using DTC strategy on PMSM, and the merits of PMSM DTC including the rapid torque esponse, he good speed-adjustable performance, and the robustness to system parameters uncertainty and disturbance. The stem predated well and successfully, which showed the speed-adjustable system had good competence in fault detection and protection.Key words: PSWM DTC default detection and protection目录摘要 (I)Abstract (II)一、绪论 (1)二、系统设计 (2)(一) 磁同步电动机DTC机理 (2)(二) 永磁同步电机直接转矩控制理论 (2)(三) 零矢量在直接转矩控制中的作用 (3)(四) 永磁同步电动机DTC系统设计 (4)1. 3.3v和5v接口电路 (4)2. 故障检测与保护 (5)(1)过流检测与保护 (5)(2) IPM保护 (6)(3)二阶Butterworth滤波电路的设计 (6)(五) 实验结果 (7)三、结论 (10)致谢 (11)参考文献: (12)一、绪论永磁同步电机具有调速性能好、易于控制、无换向火花、无励磁损耗、寿命长等突出优点,现在多用于要求快速转矩响应和高性能运行的场合。
运动控制系统2020大作业摘要:三峡工程是世界瞩目的超大工程,其中升船机的设计有着许多难点。
本文针对三峡工程中升船机运行的一些实际问题进行了解答,并基于直接转矩控制(DTC )策略,利用simulink 搭建了三相异步电机直接转矩控制系统仿真模型,采用了定子磁链圆形的控制策略,对系统进行仿真。
仿真结果表明,该直接转矩控制系统仿真模型能够很好地模拟实际调速系统的相关性能,体现了更优越的静动态性能。
关键词:DTC ;异步电动机;定子磁链控制;三峡工程 1引言 1.1 交流调速系统的发展与现状 长期以来,在调速传动领域大多采用磁场电流和电枢电流可以独立控制的直流电动机传动系统,它的调速性能和转矩控制特性比较理想,可以获得良好的动态响应,然而出于在结构上存在的问题使其在设计容量上受到限制,不能适应高速大容量化的发展方向,交流电机以其结构简单,制造方便、运行可靠,可以以更高的转速运行、可用于恶劣环境等优点得到了广泛的运用,但交流电动机的调速比较困难。
在上个世纪20年代,人们认识到变频调速是一种理想的调速方法,由于当时的变频设备庞大,可靠性差,变频调速技术发展缓慢。
60年代至今,电力电子技术和控制技术的发展,使交流调速性能可以与直流调速相媲美。
现代电子技术的飞速发展、电动机控制理论的不断完善以及计算机仿真技术的日益成熟,极大的推动了交流电动机变频调速技术的发展。
1.1.1 直接转矩控制直接转矩控制(direct torque control ,简称DTC )利用逆变器六个开关管的“开关特性”直接对电动机的转矩进行控制,即根据电动机的实际电磁转矩大于还是小于给定转矩,直接选择逆变器开关的状态。
从而输出合适的电压空间矢量,使得转矩减小或增大。
它省掉了复杂的矢量变换,其控制思想新颖,控制结构简单,物理概念明确,转矩响应迅速,电机磁场可以接近圆形,谐波小,开关损耗小,噪声及温升较小;但它也存在转矩脉动大的不足。
整体上是一个非常优秀的控制策略。
目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1电机调速技术的发展概况 (1)1.2直接转矩控制技术的发展现状 (2)1.2.1直接转矩控制的现状及发展趋势 (2)1.2.2目前的热点研究问题及解决方法 (2)1.3本文所做的工作 (3)第2章直接转矩控制理论 (4)2.1概述 (4)2.2直接转矩控制的基本原理 (4)2.2.1异步电机动态数学模型 (4)2.3逆变器的输出电压状态及电压空间矢量 (6)2.3.1逆变器输出电压状态 (6)2.3.2电压空间矢量 (7)2.4电压空间矢量对电动机定子磁链和转矩的影响 (8)2.4.1异步电机的磁链观测模型 (8)2.4.2电压空间矢量对定子磁链影响 (9)2.4.3电压空间矢量对转矩的影响 (10)2.5直接转矩控制系统的基本组成 (11)2.5.1磁链滞环调节器 (12)2.5.2转矩滞环调节器 (12)2.5.3开关信号选择单元 (13)2.6低速范围内的解决方案 (13)第3章异步电机直接转矩控制系统的建模与仿真 (16)3.1仿真软件MATLAB简介 (16)3.1.1MATLAB 语言 (16)3.1.2软件构成 (16)3.2仿真模型搭建及参数设置 (18)3.3仿真结果及分析 (20)第4章系统硬件电路的设计 (21)4.1控制电路结构简介 (21)4.2DSP(TMS320LF2407A) (21)4.3 3.3V DSP与5V逻辑器件的混合接口问题 (23)4.3.1 逻辑电平不同,接口时出现的问题 (23)4.3.2 系统接口实现方法 (24)4.4转子速度的测量 (26)4.5A/D采样电路 (26)4.6主电路结构框图 (27)4.7IPM智能模块7MBP50RA120功能简述 (28)4.8主电路的保护功能 (29)4.9主电路的控制电源 (30)第5章系统控制软件的设计开发 (31)5.1系统软件总体设计 (31)5.2软件模块 (34)5.2.1初始化模块 (34)5.2.2串口通讯模块 (35)5.2.3电流采样模块 (35)5.2.4电机转速采样模块 (36)5.2.5 Pl调节模块 (37)参考文献 (38)致谢 (40)异步电机直接转矩控制系统研究摘要:本文介绍了异步电机直接转矩控制的基本原理和系统的基本构成,在此基础上,通过Matlab/Simulink建立了各个模块的仿真模型,构建了直接转矩控制仿真系统,对直接转矩控制方法的特点及其存在的问题进行了仿真分析研究,验证了直接转矩控制系统的可行性。
直接转矩控制
以转矩为中心来进行综合控制。
直接转矩控制与矢量控制的区别是:
它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制。
其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。
这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。
直接转矩控制的特征是控制定子磁链,是直接在定子静止坐标系下,以空间矢量概念,通过检测到的定子电压、电流,直接在定子坐标系下计算与控制电动机的磁链和转矩,获得转矩的高动态性能。
它不需要将交流电动机化成等效直流电动机,因而省去了矢量变换中的许多复杂计算,它也不需要模仿直流电动机的控制,从而也不需要为解耦。
,而只需关心电磁转矩的大小,因此控制上对除定子电阻外的所有电机参数变化鲁棒性良好,
所引入的定子磁链观测器能很容易得到磁链模型,并方便地估算出同步速度信息,同时也很容易得到转矩模型,磁链模型和转矩模型就构成了完整的电动机模型,因而能方便地实现无速度传感器控制,如果在系统中再设置转速调节器,即可进一步得到高性能动态转矩控制了。
动态转矩响应速度已达到<2ms,在带速度传感器PG时的静态速度精度达土0.001%,在不带速度传感器PG的情况下即使受到输入电压的变化或负载突变的影响,同样可以达到±0.1%的速度控制精度。
NANCHANG UNIVERSITY题目:直接转矩系统仿真学院:信息工程学院系自动化专业班级:控制科学与工程学生姓名:刘涛学号:************ 任课教师:***日期:2014年5月18日直接转矩控制技术仿真分析1直接转矩控制的基本原理及特点与规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,在*T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
在直接转矩控制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。
直接转矩控制作为一种交流调速的控制技术具有以下特点:①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控制电机的磁链和转矩。
它不需要将交流电动机和直流电动机做比较等效简化,不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它省掉了矢量旋转变换等复杂的变换与计算。
因此,它所需要的信号处理工作特别简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判断。
摘要:直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。
本文对直接转矩控制原理进行了简介,以及目前应用直接转矩控制的产品介绍。
关键词:直接转矩控制,异步电机目录1直接转矩控制的基本原理及特点与规律 (3)1.1直接转矩控制系统原理与特点 (3)1.2直接转矩系统的控制规律和反馈系统 (5)2 直接转矩控制的基本原理和仿真模型 (7)2.1直接转矩控制的基本原理 (7)2.2直接转矩控制的仿真模型总图 (8)3 三相异步电机的数学模型 (8)4 磁链信号和转矩信号产生 (10)4.1定子磁链的观测控制 (10)4.2 电磁转矩的有效控制 (12)总结 (13)参考文献 (14)1直接转矩控制的基本原理及特点与规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,在*T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
4. 直接转矩控制(DTC)方式1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。
该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。
目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。
它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
5.矩阵式交—交控制方式VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。
其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。
为此,矩阵式交—交变频应运而生。
由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。
它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。
该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:? 控制定子磁链引入定子磁链观测器,实现无速度传感器方式;? 自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;? 算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;? 实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。
矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。
变频器的使用中遇到的问题和故障防范由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。
直接转矩控制系统的实现设计毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。
本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。
本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。
论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日摘要直接转矩控制是一种控制思想新颖、系统结构简明、动静态特性优良的新型高性能交流调速传动控制技术,但是存在一些不足之处。
空间矢量调制技术可以使逆变器的开关频率固定,减小转矩脉动;无差拍控制可以在一个采样周期内消除磁链和转矩的误差。
因此,空间矢量调制技术和无差拍控制的结合是一种很有希望提高直接转矩控制性能的方法。
基于这两方面的内容,本文针对直接转矩控制系统进行了分析和研究。
介绍了空间矢量调制技术的原理,对采用空间矢量调制的直接转矩控制系统与传统直接转矩控制系统进行了比较。
研究了一种新的无差拍直接转矩控制算法,该算法计算简单、物理意义明确、不用求解二次方程。
仿真结果表明控制效果比较好,对定子电流干扰和电机参数变化有一定的鲁棒性。
分析了几种磁链观测方法,研究了电机参数变化和电流测量误差对其影响。
无速度传感器技术可以提高交流传动控制系统的可靠性。
本文分析了扩展卡尔曼滤波器转速估计算法,建立了转速估计模型,研究了系统对干扰的适应能力。