IIR滤波器设计、实现及量化误差分析
- 格式:ppt
- 大小:22.50 MB
- 文档页数:30
IIR数字滤波器的设计及软件实现IIR数字滤波器(Infinite Impulse Response Digital Filter)是一种常用于信号处理的数字滤波器。
与FIR(Finite Impulse Response)滤波器不同,IIR滤波器的输出取决于过去的输入样本和输出样本。
1.确定滤波器的类型:根据实际应用需求选择低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
2.确定滤波器的阶数:阶数决定了滤波器的频率响应特性的陡峭程度。
一般来说,阶数越高,滤波器的频率响应特性越陡峭。
阶数的选择需要权衡计算复杂度和滤波器性能。
3.设计滤波器的传递函数:传递函数是描述滤波器输入和输出之间关系的数学表达式。
传递函数可以通过频率响应要求来确定。
4.选择滤波器设计方法:针对不同的频率响应要求,可以选择不同的滤波器设计方法,如巴特沃斯方法、切比雪夫方法、椭圆方法等。
5.设计滤波器的参数:根据滤波器的传递函数和设计方法,计算滤波器的系数。
这些系数可以用于实现滤波器。
软件实现的步骤如下:1. 选择合适的软件平台:根据实际需求,选择适合的软件平台,如MATLAB、Python等。
2. 导入相关的滤波器设计库:选择合适的滤波器设计库,如MATLAB的Signal Processing Toolbox、Python的scipy.signal等。
3.使用滤波器设计函数:根据选择的滤波器设计方法,使用相应的函数进行滤波器设计。
这些函数可以根据输入的参数计算出滤波器的系数。
4.实现滤波器:使用得到的滤波器系数,将其用于滤波器的实现。
可以使用滤波器函数对信号进行滤波操作。
5.评估滤波器性能:根据实际应用需求,对滤波器的性能进行评估。
可以通过比较滤波器的输出和期望的输出,或者通过分析滤波器的频率响应特性来评估滤波器的性能。
需要注意的是,IIR数字滤波器的设计和实现过程可能相对复杂,需要一定的信号处理和数学基础。
在实际应用中,可以借助已有的滤波器设计库和工具来简化设计和实现过程。
实验一:IIR数字滤波器设计及软件实现一、实验指导1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图1 三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
毕业设计IIR滤波器的设计与实现IIR滤波器(Infinite Impulse Response Filter)是一种数字滤波器,具有无限冲击响应。
相比于FIR滤波器,IIR滤波器具有更高的效率和更快的计算速度。
本文将针对IIR滤波器的设计与实现展开讨论。
首先,我们将介绍IIR滤波器的基本原理。
IIR滤波器利用反馈连接来实现滤波操作,其输出信号是输入信号和过去输出信号的加权和。
这种结构可以实现滤波器的自适应性和相位响应的宽带特性。
常见的IIR滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
接下来,我们将介绍IIR滤波器的设计方法。
IIR滤波器的设计可以采用模拟滤波器的设计方法,然后通过模拟滤波器的转换来得到数字滤波器。
其中,模拟滤波器可以使用拉普拉斯变换或者频率域转换等方法进行设计。
设计过程中需要考虑要满足的频率响应要求、滤波器的阶数以及稳定性等因素。
根据不同的设计要求,可以选择适合的设计方法和滤波器类型。
接下来,我们将介绍IIR滤波器的实现方法。
一种常见的IIR滤波器实现方法是直接形态实现,即通过差分方程的形式实现滤波器。
通过差分方程可以将IIR滤波器的输入信号与过去输出信号进行运算,得到输出信号。
此外,还可以利用双边z变换或单边z变换等方法将差分方程转换为差分方程的系数表示形式。
这样可以方便地进行滤波器的实现和计算。
另一种常见的IIR滤波器实现方法是级联形态实现,即将滤波器的阶数分解为若干个一阶或二阶滤波器的级联。
通过级联形式可以降低滤波器的复杂度和计算量。
最后,我们将介绍IIR滤波器的应用领域。
IIR滤波器广泛应用于信号处理、通信系统、音频处理等领域。
在信号处理中,IIR滤波器常用于滤除噪声、滤波和频谱分析等任务。
在通信系统中,IIR滤波器常用于调制解调、信道均衡和解调等任务。
在音频处理中,IIR滤波器常用于音频均衡、音调调整等任务。
综上所述,IIR滤波器是一种高效、快速的数字滤波器。
iir数字滤波器的设计方法IIR数字滤波器的设计方法IIR数字滤波器是一种常用的数字信号处理工具,用于对信号进行滤波和频率域处理。
其设计方法是基于传统的模拟滤波器设计技术,通过将连续时间滤波器转换为离散时间滤波器来实现。
本文将介绍IIR数字滤波器的设计方法和一些常见的实现技巧。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种递归滤波器,其基本原理是将输入信号与滤波器的系数进行加权求和。
其输出信号不仅与当前输入值有关,还与之前的输入和输出值有关,通过不断迭代计算可以得到最终的输出结果。
二、IIR数字滤波器的设计步骤1. 确定滤波器的类型:低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
2. 确定滤波器的阶数:阶数决定了滤波器的陡峭度和性能。
3. 选择滤波器的截止频率或通带范围。
4. 根据所选的滤波器类型和截止频率,设计滤波器的模拟原型。
5. 将模拟原型转换为数字滤波器。
三、IIR数字滤波器的设计方法1. 巴特沃斯滤波器设计方法:- 巴特沃斯滤波器是一种最常用的IIR数字滤波器,具有平坦的通带特性和陡峭的阻带特性。
- 设计方法为先将模拟滤波器转换为数字滤波器,然后通过对模拟滤波器进行归一化来确定截止频率。
2. 阻带衰减设计方法:- 阻带衰减设计方法是一种通过增加滤波器的阶数来提高滤波器阻带衰减特性的方法。
- 通过增加阶数,可以获得更陡峭的阻带特性,但同时也会增加计算复杂度和延迟。
3. 频率变换方法:- 频率变换方法是一种通过对滤波器的频率响应进行变换来设计滤波器的方法。
- 通过对模拟滤波器的频率响应进行变换,可以得到所需的数字滤波器。
四、IIR数字滤波器的实现技巧1. 级联结构:- 将多个一阶或二阶滤波器级联起来,可以得到更高阶的滤波器。
- 级联结构可以灵活地实现各种滤波器类型和阶数的设计。
2. 并联结构:- 将多个滤波器并联起来,可以实现更复杂的频率响应。
- 并联结构可以用于设计带通滤波器和带阻滤波器。
实验三IIR数字滤波器设计及实现一、实验目的(1)熟悉用脉冲响应不变法和双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数设计IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
二、实验原理设计IIR数字滤波器一般采用脉冲响应不变法和双线性变换法。
脉冲响应不变法:根据设计指标求出滤波器确定最小阶数N和截止频率Wc;计算相应的模拟滤波器系统函数;将模拟滤波器系统函数:'转换成数字滤波器系统函数双线性变换法:根据数字低通技术指标得到滤波器的阶数N;取合适的T值,几遍校正计算相应模低通的技术指标--;根据阶数N查表的到归一化低通原型系统函数。
,将"' Q 代入。
‘去归一化得到实际的,/ :' ;用双线性变换法将:’转换成数字滤波器三、实验内容及步骤1、用脉冲响应不变法设计(1)根据设计指标求出滤波器确定最小阶数N和截止频率Wcclear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数Wn 得到结果为:N 二7Wn 二 0.3266 即:该设计指标下的模拟滤波器最小阶数为N=7,其截至频率为Wn =0.3266;(2)计算相应的模拟滤波器系统函数打:, clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数 Wn[B,A]=butter(N,1,'s' %计算相应的模拟滤波器系统函数得到结果为: B = 1.0e-003 * 0 00 0 0 0 0 0.3966 A =1.0000 1.4678 1.0773 0.5084 0.1661 0.0375 0.0055 0.0004 >>(3)将模拟滤波器系统函数转换成数字滤波器系统函数 clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定 butterworth 的最小阶数 N 和频率参数Wn[B,A]=butter(N,1,'s' ; %计算相应的模拟滤波器系统函数 [Bz,Az]=impinvar(B,A %用脉冲相应不变法将模拟滤波器转换成数字滤波器 sys=tf(Bz,Az,T; %得到传输函数‘‘‘‘‘ Bz =1.0e-004 *-0.0000 0.0045 0.2045 0.8747 0.7094 0.1090 0.0016 0Az =1.0000 -5.5415 13.2850 -17.8428 14.4878 -7.1069 1.9491 -0.2304>>>>即:由Bz和Az可以写出数字滤波器系统函数为:Transfer function:-9.992e-015 z~7 + 4.454e-007 z~6 + 2.045e-005 z~5 + 8.747e-005 z~4 + 7.094e-005 z"3 + 1.09e-005 z~2+ 1.561e-007 z z 7 - 5.541 z 6 + 13.28 z 5 - 17.84 z 4 + 14.49 z 3 - 7.107 z 2 + 1.949 z - 0.2304Sampling time: 4.5351e-005>>(4)绘图clear;close all;clc; % 开始准备fp=3400;fs=5000;Fs=22050;Rp=2;Rs=20;T=1/Fs; % T=1s 的模拟滤波器设计指标W1p=fp/Fs*2; W1s=fs/Fs*2; % 求归一化频率[N, Wn] = buttord(W1p, W1s, Rp, Rs, 's'; % 确定butterworth 的最小阶数N 和频率参数Wn[B,A]=butter(N,Wn,'s'; %计算相应的模拟滤波器系统函数[Bz,Az]=impinvar(B,A; %用脉冲响应不变法将模拟滤波器转换成数字滤波器sys=tf(Bz,Az,T;%得到传输函数‘ [H,W]=freqz(Bz,Az,512,Fs; % 生成频率响应参数plot(W,20*log10(abs(H; % 绘制幅频响应grid on; %加坐标网格得到结果为:观察实验结果图可看到:在频率为3402Hz处频率为衰减2.015db,在频率为5017Hz处幅度衰减21.36db。
IIR滤波器的设计与实现IIR滤波器(Infinite Impulse Response Filter)是一种数字滤波器,其特点是具有无限冲激响应。
与FIR滤波器不同,它的输出不仅与输入信号有关,还与历史输入信号有关。
这使得IIR滤波器在一些应用中具有更高的灵活性和效率。
设计一个IIR滤波器主要包括确定滤波器的传递函数和选择滤波器类型两个步骤。
在确定传递函数时,可以根据不同的要求选择不同的滤波器类型,如低通滤波器、高通滤波器、带通滤波器等。
常见的IIR滤波器设计方法包括脉冲响应不变法、双线性变换法和频率抽样法等。
在实际实现过程中,可以使用各种工具和软件进行设计和仿真。
其中一种常用的设计方法是MATLAB工具包中提供的函数,如butter、cheby、ellip等。
这些函数可以根据用户提供的设计参数生成IIR滤波器的系数。
通过调试和优化这些系数,可以得到满足要求的滤波器。
IIR滤波器的实现通常分为直接形式和间接形式两种。
直接形式实现简单直观,但会引入大量的计算和存储开销;间接形式在计算和存储方面更加高效,但会增加系统的复杂性。
选择哪种实现形式需要根据具体应用场景和性能需求来决定。
在进行IIR滤波器的实际设计和实现时,还需要注意一些常见的问题。
例如,滤波器的阶数和截止频率的选择需要根据信号的特性和要求来确定;如果滤波器存在共振或不稳定的问题,可以通过增加阶数或调整系数来解决;另外,在实际应用中,可能还需要考虑滤波器的滤波延迟、实时性和系统资源消耗等因素。
总之,IIR滤波器的设计和实现是一个综合考虑信号特性、要求和系统约束的过程。
通过选择合适的设计方法、优化滤波器系数和选择合适的实现形式,可以得到满足要求的高性能滤波器。
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。