PCB板电路设计中的数字地和模拟地考虑
- 格式:docx
- 大小:20.59 KB
- 文档页数:3
数字地与模拟地的区别,很有意思的解释哦(ZT)MM20132014-12-4 上午10:57其实本质是对的,就是数字地,模拟地都是地,并不是他们俩头上长角,十分的怪异,要明白为什么要分开,先听我说一个故事我们公司所在的商务楼共有3楼,2楼是搞模拟的,3楼是做数字的,整幢楼只有一部电梯,平时人少的时候还好办,上2楼,上3楼互不影像,但每天早上上下班的时候就不得了了,人多得很,搞数字的要上3楼,总是被2楼的模拟影响,2楼模拟的人要下楼,总是要等电梯上了3楼,再下来,互相影响很是麻烦,商务楼的物业为解决这个问题,提出了2个方案,第1个(笑死人了)电梯扩大,可以装更多的人,电梯大了是好,但公司会招人,人又多了,再换电梯,再招人...永远死循环,有一个办法到挺好,大家索性不要电梯,直接往下跳,不管2楼的,3楼的,肯定解决问题,但肯定会出问题(第1个被枪毙掉了);第2个装2部电梯,一部专门上2楼,另一部专门上3楼Wonderful!太机智了,这样2层楼面的工作人员就互不影响了。
End明白了否?数字地,模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯--地,而这部电梯所用的井道就是我们在PCB上布得地线。
模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导通电流的,可问题处在这根线上有电阻!而且最根本的问题是走这条线的电流要去2个不同的回路。
假设一下,有2股电流,数流,模流同时从地出发。
有2个器件,数件,模件。
若2个回路不分开,数流,模流回走到数件的接地端前的时候,损耗的电压为v=(数流+模流)x 走线电阻相当于数字器件的接地端相对于地端升高了v. 数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在我头上?同理模拟器件也会同样抱怨。
2个解决方案:第1个:你布的PCB线没有阻抗,自然不会引起干扰,就像2、3楼直接往下跳,那是井道最宽的时候,也就是可以装一个无限大的电梯,自然谁都不影响谁,但谁都知道,this is mission impossible第2个:2条回路分开走,数流,模流分开,既数地、模地分开。
电路设计为什么要分数字地和模拟地?如何对模拟地与数字地隔离? 做过电路设计的同学都会知道,电路设计中对于数字地,模拟地和电源地的区分在某些应⽤中要求是⼗分严格的。
有的同学就会不明⽩:那么这些地有什么区别呢,为什么要区分这些地呢? ⾸先要明确数字(DIGTAL)和模拟(ANALOG)的概念。
所谓数字,即0和1、真(TRUE)和假(FALSE)、低(LOW)和⾼(HIGH)。
也就是说在数字电路⾥,1代表着⾼电平,0代表着低电平在不同的数字电路中,这些⾼电平代表的范围也不同。
现在我们参考常⽤的TTL电平,在TTL电平中+5V代表⾼电平即1,0V代表低电平即0。
但是实际中⾼低电平是有⼀个范围的,例如0~0.8V都是低电平,当这个范围内的电压输⼊到数字器件⾥,⽐如我输⼊0.2V就会被识别为低电平,⾼电平也是同理。
通过这个例⼦可以看出来数字电路对于噪声是有⼀定的容忍能⼒的。
所谓模拟,就是线性的量,只要是线性变化的就可以看做是模拟量。
例如电压、电流就是典型的模拟量。
很多模拟器件输出都是电压。
模拟量不同于数字,它对于噪声是零容忍,对于模拟量来说,噪声越低越好,对于数字量⽽⾔0.2V的噪声可能不会带来什么影响,但是对于模拟量来说,0.2V的噪声就会对结果造成⼗分巨⼤的误差。
例如我使⽤STM32的ADC来读取光强传感器的数值,STM32ADC的读取范围是0~3.3V,假设本来我读出来的光强转换为电压为0.4V,这个时候来⼀个0.2V的噪声,就变成了0.2V或者0.6V,相⽐0.4V来说就产⽣了50%的误差,最终我转换出来的光强值就相差了50%。
从这个例字就可以看出来,模拟量对噪声是不可容忍的。
既然明⽩了模拟和数字,那么为什么他们要隔离呢?既然都知道数字是⽆数的0和1组成的,那么也以将数字量看成⽆数脉冲。
根据信号与系统中学习的傅⾥叶变换,这些脉冲是可以分解成⽆数频率不同的正弦/余弦曲线的,也就是噪声。
如果将数字地与模拟地直接相连,这些噪声将会进⼊模拟端,对模拟量产⽣影响。
PCB设计中的数字与模拟信号处理在PCB设计中,数字信号和模拟信号处理是重要的环节。
数字与模拟信号处理的正确实施对于电路性能及其稳定性至关重要。
本文将重点讨论PCB设计中数字与模拟信号处理的关键问题,并提供相应的解决方案。
一、数字信号处理在PCB设计中,数字信号处理是电路中数字信号的处理过程。
数字信号处理主要包括信号采集、滤波、放大、数字化等步骤。
下面将分别介绍这些步骤及其在PCB设计中的应用。
1. 信号采集信号采集是将模拟信号转换为数字信号的过程。
在PCB设计中,常用的信号采集技术有模数转换器(ADC)和传感器。
ADC的选择应根据采样率、精度和功耗等要求,采用合适的芯片来满足设计需求。
传感器的选择应根据具体应用场景,选择适合的传感器类型和接口。
2. 滤波滤波是为了去除信号中的噪声和不需要的频率成分。
在PCB设计中,常用的滤波技术包括模拟滤波和数字滤波。
模拟滤波通常通过电容、电感和电阻等元器件构成,具有简单、易于调整的特点。
数字滤波通常采用数字滤波器实现,可以通过软件或者FPGA来编程实现。
3. 放大放大是为了提高信号的幅度,以满足后续电路的要求。
在PCB设计中,常用的放大技术有运算放大器(OPA)和差分放大器。
运算放大器用于放大电压信号,差分放大器用于放大差分信号。
根据具体要求,选择合适的放大器类型和电路连接方式。
4. 数字化数字化是将模拟信号转换为数字信号的过程。
在PCB设计中,常用的数字化技术有模数转换器(ADC)和时钟控制器。
模数转换器将连续的模拟信号转换成离散的数字信号,时钟控制器用于同步数字信号的传输和处理。
二、模拟信号处理模拟信号处理是对电路中模拟信号的处理过程。
模拟信号处理主要包括放大、滤波、混频、解调等步骤。
下面将分别介绍这些步骤及其在PCB设计中的应用。
1. 放大放大是为了提高信号的幅度,以满足系统的要求。
在PCB设计中,常用的放大技术有运算放大器(OPA)和放大器模块。
运算放大器用于放大电压信号,放大器模块可以提供更高的放大倍数和更好的线性度。
PCB板级数字地和模拟地的处理1. 模拟地和数字地直接共有会产生干扰的原理理想的情况下(地线没有电阻),模拟地和数字地共用是没有问题的。
但是,实际上,导线都是有电阻的,问题就出在这里。
现在假设一下,有2股电流,数流,模流同时从地出发。
有2个器件,数件,模件。
若2个回路不分开,模拟回路的电流走这条线,数字回路的电流也走这条线。
数流,模流回走到数件的接地端前的时候,损耗的电压为vv=(数流+模流)x走线电阻。
相当于数字器件和模拟器件的接地端相对于地端都升高了v。
这时模拟部分和数字部分就会相互串扰,这些串扰噪声就会影响模拟电路,使得模拟电路的小信号指标变差。
2. 几种解决方案数字地和模拟地处理的基本原则如下:1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。
而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。
2)、高频电路还应考虑如何抑制高频辐射噪声。
方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。
3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。
注意若为低频电路,则应避免地线环路。
4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。
3. 模拟地和数字地之间连接在模拟地和数字地大面积直接相连,会导致相互串扰。
为了在模拟地和数字地之间能隔交通直,一般地,有以下四种连接方法。
(1)用串接磁珠相连,磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
(2)用电容相连。
(3)用串接电感相连,一般几uH到数十uH。
电感特性不稳定,离散分布参数不好控制,体积大。
几幅图教你区分数字地、模拟地、电源地,单点接地
我们在进行pcb布线时总会面临一块板上有两种、三种地的情况,傻瓜式的做法当然是不管三七二十一,只要是地,就整块敷铜了。
这种对于低速板或者对干扰不敏感的板子来讲还是没问题的,否则可能导致板子就没法正常工作了。
当然若碰到一块板子上有多种地时,即使板子没什么要求,但从做事严谨认真的角度来讲,咱们也还是有必要采用本文即将讲到的方法去布线,以将整个系统最优化,使其性能发挥到极致!当然关于这些地的一些基础概念、为什么要将它们分开,本文就不讲了,不懂的同学自己查哈!
一、对于板子上有数字地、模拟地、电源地这种情况:
从这个图可以看出:模拟地和数字地是完全分开的,最后都单点接到了电源地,这样可以防止地信号的相互串扰而影响某些敏感元件,众所周知数字元件对干扰的容忍度要强于模拟元件,而数字地上的噪声一般比较大所以将它们的地分开就可以降低这种影响了。
还有单点接地的位置应该尽量靠近板子电源地的入口(起始位置),这样利用电流总是按最短路径流回的原理可将干扰降到最小。
二、对于板子上只有数字地、电源地这种情况:
从此图可以看出:只在电源地和数字地之间用一个0欧电阻或磁珠之类的单点接地就行了,同样单点接地的位置应该尽量靠近板子电源地的入口(起始位置)。
三、展示一些第二种情况的pcb系统
1、地线分区
2、0欧电阻单点接地
3、板子正面图
- END -。
PCB设计模拟布局与数字布局技术的要领PCB(Printed Circuit Board)是电子电路所必需的基础部件之一。
它重要的作用在于将电路板上的各种元器件、电子器件、传感器设备连接在一起,实现各种电路功能。
好的PCB设计师需要有一定的电路原理基础知识。
同时,他们必须理解电路设计规范和模拟布局与数字布局技术。
本文旨在探讨PCB设计中的模拟布局与数字布局技术的要领。
一、模拟布局技术模拟电路和数字电路的差异在于,前者的信号是连续变化的模拟信号,而后者的信号是离散数值的数字信号。
因此,模拟布局需要关注信号的连续性以及器件产生的噪声和交叉干扰。
下面介绍一些模拟布局技术的要领:1. 电源和地线的布局每个电路板都必须有一个电源,而电源的地线是所有电路板的共同接地点。
在布局时,电源的线路应该尽可能短,并且要放在每个板的边缘处。
地线应该是尽可能粗的线路,并且应该交错地排列。
这样可以减少电源线对其他线路的干扰。
2. 分类布局模拟电路通常按其使用的频率等级进行分类,每个功能块分别进行布局,以减少信号交叉干扰。
例如,低频放大器与高频振荡器必须分别进行布局,以减少噪声和交叉干扰。
3. 线路布局线路的长度和宽度影响电路板上的信号速度和抗干扰能力。
因此,在布局时应该缩短信号线路的长度并使其尽可能宽。
同时,必须避免信号线路与电源线路和地线共线。
这种布局模式可以有效减少电磁干扰引起的信号串音和其他问题。
4. 组件安排模拟电路中使用的基本电路元件是电阻、电容和电感。
这些元件的放置位置和方向对线路的性能和稳定性有直接影响。
在安排元件时,应优先考虑干扰源和受干扰元件之间的距离,并优先安排相互干扰较小的元件。
二、数字布局技术数字布局是以数字信号为基础,以信号延迟、滤波和误差修正等为目标的布局技术。
它主要解决的问题是抗干扰和提高电路速度。
下面介绍一些数字布局技术的要领:1. 信号线的选择数字信号线具有短脉冲宽度和低电平峰值等特征,而噪声和交叉干扰容易影响数字信号的传输。
有时候一个电路中既有数字电路又有模拟电路,这个时候画PCB的时候要注意区分这两个地,必要的时候要分离开来画PCB地线,但最终需要用0欧姆电阻连接起来,主要原因是让电路避免不必要的信号干扰这是非常important!!!可以这么说电路中的一切干扰均由于地线干扰。
听我一一道来:1:理论上我们一般认为只要是个地线电位就是0了,这是理论2:真实情况是什么样的呢:从电源地开始后面都是负载,可以说电源地才是真的地,我们经常将一处电路的地经过一个导线接到电源地上,但是不可否认中间是有一段铜线的,这段铜线我们一般认为电阻为0,其实不然,理论是铜线越细越长电阻越大,所以到你电路上的真实地有可能都是0.3V了(注意:这只是打比方),在模拟电路中有时候只是电压高低而已,如果这个电平继续扩大,在数字电路中就危险了,有可能进来的是低电平,经过这个提压已经变成了高电平,造成信号不能正确识别。
3:所谓的数字地和模拟地只是概念,只要你能保证地的电平为真实的0V,其实数字模拟地都一样,但是印制PCB的时候我们为了避免不必要的麻烦,或者让数字电路和模拟电路都有一个统一的电平地,故意区分开来,避免电路信号干扰4:也许你想知道的只是:可以!两个都接到一起然后接到电源地就OK。
Do you understand?追问那要怎么保证真实地为0V呢?谢谢回答严格意义上没有真实0V,你要明白电压永远都是相对值。
但是我们可以假设电源输入的地就是0V,我们能发挥主动性的部分就是电路设计,比如加大电线的宽度,覆铜等等,或者数字地尽量做到一起保证大家都是同一个电位,我们能做到的就是这个,因为你的板子上面永远是一个压差。
如果您想仔细理解,还需要多看模电和电工理论知识,做一个电路也会理解更多。
这个问题的扩展:电源地是哪里来的?欢迎你继续深入学习,祝您学业有成。
模拟电路与数字电路PCB设计的区别本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。
模拟和数字布线策略的相似之处旁路或去耦电容在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。
系统供电电源侧需要另一类电容,通常此电容值大约为10mF。
这些电容的位置如图1所示。
电容取值范围为推荐值的1/10至10倍之间。
但引脚须较短,且要尽量靠近器件(对于0.1mF电容)或供电电源(对于10mF电容)。
在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。
但有趣的是,其原因却有所不同。
在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。
一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。
如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。
图1 在模拟和数字PCB设计中,旁路或去耦电容(1mF)应尽量靠近器件放置。
供电电源去耦电容(10mF)应放置在电路板的电源线入口处。
所有情况下,这些电容的引脚都应较短图2 在此电路板上,使用不同的路线来布电源线和地线,由于这种不恰当的配合,电路板的电子元器件和线路受电磁干扰的可能性比较大图3 在此单面板中,到电路板上器件的电源线和地线彼此靠近。
此电路板中电源线和地线的配合比图2中恰当。
电路板中电子元器件和线路受电磁干扰(EMI)的可能性降低了679/12.8倍或约54倍对于控制器和处理器这样的数字器件,同样需要去耦电容,但原因不同。
这些电容的一个功能是用作“微型”电荷库。
在数字电路中,执行门状态的切换通常需要很大的电流。
由于开关时芯片上产生开关瞬态电流并流经电路板,有额外的“备用”电荷是有利的。
在PCB上怎样设计“数字地和模拟地”?来源于:/thread-294768-1-1.html方法一:按电路功能分割接地面分割是指利用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。
按电路功能分割地线例如图所示,利用分割技术将4个不同类型电路的接地面分割开来,在接地面用非金属的沟来隔离四个接地面。
每个电路的电源输入都采用LC滤波器,以减少不同电路电源面间的耦合。
对于各电路的LC滤波器的L和C来说,为了给每个电路提供不同的滤波特性,最好采用不同数值。
高速数字电路由于其具有高的瞬时功率,高速数字电路放在电源入口处。
接口电路考虑静电释放(ESD)和暂态抑制的器件或电路等因素,位于电源的末端。
在一块印刷电路板上,按电路功能接地布局的设计例如图所示,当模拟的、数字的、有噪声的电路等不同类型的电路在同一块印刷电路板上时,每一个电路都必须以最适合该电路类型的方式接地。
然后再将不同的地电路连接在一起。
二.采用局部接地面振荡器电路、时钟电路、数字电路、模拟电路等可以被安装在一个单独的局部接地面上。
这个局部接地面设置在PCB的顶层,它通过多个通孔与PCB的内部接地层(0V参考面)直接连接,一个设计例如图5.7.20所示。
将振荡器和时钟电路安装在一个局部接地面上,可以提供一个镜像层,捕获振荡器内部和相关电路产生的共模RF电流,这样就可以减少RF辐射。
当使用局部接地面时,注意不要穿过这个层来布线,否则会破坏镜像层的功能。
如果一条走线穿过局部化接地层,就会存在小的接地环路或不连续性电位。
这些小的接地环路在射频时会引起一些问题。
如果某器件应用不同的数字接地或不同的模拟接地,该器件可以布置在不同的局部接地面,通过绝缘的槽实现器件分区。
进入各部件的电源电压使用铁氧体、磁珠和电容器进行滤波。
一个设计例如图5.7.21和图5.7.22所示。
三:PCB采用“无噪声”的I/O地与“有噪声”的数字地分割设计为了使用电缆去耦或屏蔽技术来抑制共模噪声,在PCB设计时,需要考虑为电缆的去耦(将电流分流到地)和屏蔽提供没有受到数字逻辑电路噪声污染的“无噪声”或者“干净”的地。
PCB板电路设计中的数字地和模拟地考虑
1 为什么要分数字地和模拟地
因为虽然是相通的,但是距离长了,就不一样了。
同一条导线,不同的点的电压可能是不一样的,特别是电流较大时。
因为导线存在着电阻,电流流过时就会产生压降。
另外,导线还有分布电感,在交流信号下,分布电感的影响就会表现出来。
所以我们要分成数字地和模拟地,因为数字信号的高频噪声很大,如果模拟地和数字地混合的话,就会把噪声传到模拟部分,造成干扰。
如果分开接地的话,高频噪声可以在电源处通过滤波来隔离掉。
但如果两个地混合,就不好滤波了。
2 如何设计数字地和模拟地
在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。
了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。
许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。
如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。
这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。
采用光隔离器件或变压器也能实现信号跨越分割间隙。
对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。
还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。
要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。
高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。
在实际工作中一般倾向于使用统一地,而将PCB分区为模拟部分和数字部分。
模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。
在这种情况下,数字信号返回电流不会流入到模拟信号的地。
只有将数字信号布线在电路板的模拟部分之上或者将模拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。
出现这种问题并不是因为没有分割地,真正的
原因是数字信号的布线不适当。
PCB设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。
在这种情况下,元器件的布局和分区就成为决定设计优劣的关键。
如果布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟信号。
对于这样的布线必须仔细地检查和核对,要保证百分之百遵守布线规则。
否则,一条信号线走线不当就会彻底破坏一个本来非常不错的电路板。
在将A/D转换器的模拟地和数字地管脚连接在一起时,大多数的A/D转换器厂商会建议:将AGND和DGND管脚通过最短的引线连接到同一个低阻抗的地上(注:因为大多数A/D转换器芯片内部没有将模拟地和数字地连接在一起,必须通过外部管脚实现模拟和数字地的连接),任何与DGND连接的外部阻抗都会通过寄生电容将更多的数字噪声耦合到IC内部的模拟电路上。
按照这个建议,需要把A/D转换器的AGND和DGND管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦电容的接地端应该接到模拟地还是数字地的问题。
如果系统仅有一个A/D转换器,上面的问题就很容易解决。
如图3中所示,将地分割开,在A/D转换器下面把模拟地和数字地部分连接在一起。
采取该方法时,必须保证两个地之间的连接桥宽度与IC等宽,并且任何信号线都不能跨越分割间隙。
如果系统中A/D转换器较多,例如10个A/D转换器怎样连接呢?如果在每一个A/D转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意义。
而如果不这样连接,就违反了厂商的要求。
最好的办法是开始时就用统一地。
如图4所示,将统一的地分为模拟部分和数字部分。
这样的布局布线既满足了IC器件厂商对模拟地和数字地管脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线而产生EMC问题。
如果对混合信号PCB设计采用统一地的做法心存疑虑,可以采用地线层分割的方法对整个电路板布局布线,在设计时注意尽量使电路板在后边实验时易于用间距小于1/2英寸的跳线或0欧姆电阻将分割地连接在一起。
注意分区和布线,确保在所有的层上没有数字信号线位于模拟部分之上,也没有任何模拟信号线位于数字部分之上。
而且,任何信号线都不能跨越地间隙或是分割电源之间的间隙。
要测试该电路板的功能和EMC性能,然后将两个地通过0欧姆电阻或跳线连接在一起,重新测试该电路板的功能和EMC性能。
比较测试结果,会发现几乎在所有的情况下,统一地的方案在功能和EMC性能方面比分割地更优越。
分割地的方法还有用吗?
在以下三种情况可以用到这种方法:一些医疗设备要求在与病人连接的电路和系统之间的漏电流很低;一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;另外一种情况就是在PCB的布局受到特定限制时。
在混合信号PCB板上通常有独立的数字和模拟电源,能够而且应该采用分割电源面。
但是紧邻电源层的信号线不能跨越电源之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积地的电路层上。
在有些情况下,将模拟电源以PCB连接线而不是一个面来设计可以避免电源面的分割问题。
3.电路设计中用0欧电阻还是磁珠来隔离数字地和模拟地?
模拟地和数字地单点接地,只要是地,最终都要接到一起,然后入大地。
如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。
地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。
人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。
虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。
如果把模拟地和数字地大面积直接相连,会导致互相干扰。
不短接
又不妥,理由如上有四种方法解决此问题:1、用磁珠连接;2、用电容连接;3、用电感连接;
4、用0欧姆电阻连接。
磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。
对于频率不确定或无法预知的情况,磁珠不合。
电容隔直通交,造成浮地。
电感体积大,杂散参数多,不稳定。
0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。
电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。
跨接时用于电流回路当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。
在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。
配置电路一般,产品上不要出现跳线和拨码开关。
有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。
空置跳线在高频时相当于天线,用贴片电阻效果好。
其他用途布线时跨线调试/测试用临时取代其他贴片器件作为温度补偿器件更多时候是出于EMC对策的需要。
另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。
大尺寸的0欧电阻还可当跳线,中间可以走线还有就是不同尺寸0欧电阻允许通过电流不同,一般0603的1A,0805的2A,所以不同电流会选用不同尺寸的还有就是为磁珠、电感等预留位置时,得根据磁珠、电感的大小还做封装,所以0603、0805等不同尺寸的都有了0欧姆电阻一般用在混合信号的电路中,在这种电路中为了减小数字部分和模拟部分的相互干扰,他们的电源地线都是分开布的,但在电源的入口点又需要连在一起,一般是通过0欧姆电阻连接的,这样既达到了数字地和模拟地间无电压差,又利用了0欧姆电阻的寄生电感滤除了数字部分对模拟部分的干扰.。